
How to make nice figures and tables in scientific publications

Thorkild Tylleskär

Centre for International Health,

University of Bergen (UiB)

1

Overview

Four parts:

- 1. Basics about tables and figures in scientific papers
- 2. Choosing to present data as a table or as a figure
- 3. Tables
- 4. Figures

3

Scientific papers

In scientific papers data are presented, either:

- 1. in the text or
- 2. in a table or
- 3. in a figure

Do not duplicate the data: in table + in text or in table + in figure

What is a figure in scientific text?

- Anything that is not a table or text
- It includes photographs, pictures, illustrations, drawings, diagrams, anything
- It is numbered:
 - Figure 1. Overview of XYZ
 - Figure 2. Next illustration
- There is always an anchor in the text, figure 2.

5

Classical way to organise a manuscript

- Manuscripts are commonly in parts:
 - One file with title page (title, authors and affiliations), abstract, main text and references
 - · One file with tables
 - One file for each figure
- A good way to avoid headaches

Hint to make it neat (for instance in your thesis)

2 types of fonts:

- 1. With 'serifs' (= feet)
- 2. Without 'serifs', sans-serifs

Classic rule 1:

- 1. Serif font for main text
- 2. Sans-serif font for figures and tables

With serifs	Sans-serifs
Times New Roman	Arial
Bodoni MT	Calibri
Palatino Linotype	Tahoma
DejaVu Serif	DejaVu Sans

Classic rule 2: Maximum:

- · 2 different fonts and
- 2 different sizes and
- 2 different types (regular + italic) or (regular + bold)

7

Figure or table?

- Use figures for:
 - simple messages, trends, relationships
- Use tables are for
 - complex data, exact numbers, data with a wide range

Table headings always ABOVE the table

Figure legends always BELOW the figure

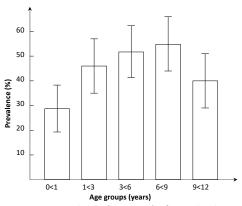


Figure 2. Prevalence (± 95% CI) of *H. Pylori* by age group in Kampala, Uganda.

Table 1. Baseline characteristics.

	Number N = 345	Percent
Education status		
Not educated	181	52.46
Primary	109	31.59
Secondary	36	10.43
Tertiary	18	5.22
Marital status		
Single	5	1.45
Married	329	95.36
Separated	10	2.90
Widowed	1	0.29
Employment status		
Unemployed	221	64.06
Self-employed	94	27.25
Employed	30	8.70

9

Tables

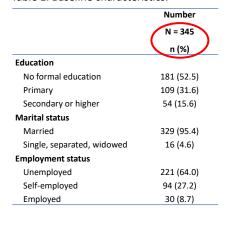

A classical table (for printing) has only 3 horisontal lines:

Table 1. Baseline characteristics.

	Number	Percent	
	N = 345		
Education status			
Not educated	181	52.46	
Primary	109	31.59	
Secondary	36	10.43	
Tertiary	18	5.22	
Marital status			
Single	5	1.45	
Married	329	95.36	
Separated	10	2.90	
Widowed	1	0.29	
Employment status			
Unemployed	221	64.06	
Self-employed	94	27.25	
Employed	30	8.70	

Keep it simple, give OVERVIEW

Table 1. Baseline characteristics.

11

Table 1. Baseline characteristics.

	Number	
	N = 345	
	n (%)	
Age (years), mean (SD)	29.09 (5.63)	
Parity, mean (SD)	3.28 (1.75)	
Gestation age (weeks), median (IQR)	28 (22 - 32)	
Distance from hospital (Km), median (IQR)	4 (3 - 5)	
Time to hospital (mins), mean (SD)	32.87 (15.28)	
Duration on treatment (months), median (IQR)	36 (12 - 60)	
Education		
No formal education	181 (52.5)	
Primary	109 (31.6)	
Secondary or higher	54 (15.6)	
Marital status		
Married	329 (95.4)	
Single, separated, widowed	16 (4.6)	
Employment status		
Unemployed	221 (64.0)	
Self-employed	94 (27.2)	
Employed	30 (8.7)	

Try to avoid mixing different types of data in the same table. At least do not put an incorrect heading on the column.

		Unintended pregnancy		
	N = 345	Bivariable logistic regression	Multivariable logistic regression	
	n	Unadjusted OR (95%CI)	Adjusted OR (95%CI)	
Age (years)				Do not use small suscesses
<u><</u> 19	20	1	1	Do not use small groups as
20-24	54	0.87 (0.27-2.80)	0.64 (0.17-2.38)	reference group in logistic
25-29	104	0.86 (0.29-2.59)	0.76 (0.22-2.64)	regression
30-34	99	0.47 (0.16-1.4)	0.40 (0.11-1.44)	
<u>></u> 35	68	0.31 (0.10-0.96)	0.33 (0.09-1.26)	
Education Status				
Not educated	182	1	1	
Primary	109	1.41 (0.86-2.31)	1.14 (0.67-1.98)	
Secondary	36	1.88 (0.86-4.13)	1.69 (0.70-4.10)	
Tertiary	18	5.79 (1.29-25.93)	4.3 (0.89-20.87)	
Marital status				
single	16	1	1	
married or cohabiting	329	4.15 (1.41-12.23)	4.44 (1.30-15.14)	
Parity				
0 to 4 children	262	1	1	
5 to 9 children	83	0.32 (0.20-0.54)	0.37 (0.20-0.68)	

Best tool for tables

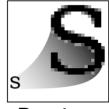
• Excel

Figures

15

Types of graphics

- Photographs
 - Consists of pixels
 - When you search on internet you can see, for instance 2500 x 2282
- Diagrams are of two types
 - Pixel-based, also called bitmap (not scalable), like photographs
 - Vector-based (scalable)


Pixel-based file types (Raster)

- .tif
 - common for photographs/graphics (can be high-resolution)
- - common for photographs / graphics
- .gif
 - Graphics Interchange Format, common for graphics (low-resolution)
- - Portable Network Graphics, common for graphics

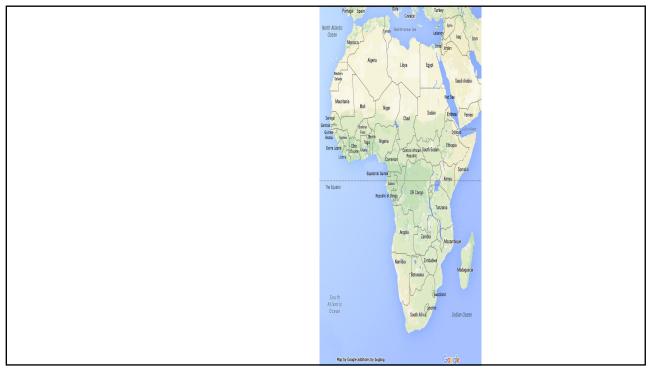
17

Vector-based file types

- .eps
 - Encapsulated post-script, common for graphics
- .svg
 - Scalable Vector Graphics (SVG)/graphics
- .ai
 - Adobe Illustrator

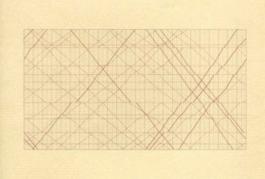
Resolution

- Resolution is defined in
 - Dots per inch (dpi)
- Screen resolution is 72 dpi
- Minimum resolution for printing is 300 dpi
- High resolution printing is 1200 dpi


19


If you use photographs

• Do not torture them!



Edward R. Tufte

- Jeffrey Nicols PowerPoint:
 - http://www.cs.cmu.edu/~jeffreyn/talk s/tufte-lecture.ppt
- Tufte himself:
 - https://www.youtube.com/watch?v=T h 1azZA2OY
- An explanation:
 - https://www.youtube.com/watch?v=q QGcK20pJk0

The Visual Display of Quantitative Information

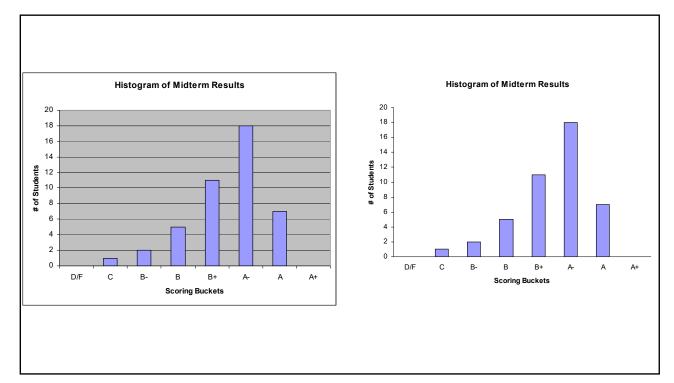
EDWARD R. TUFTE

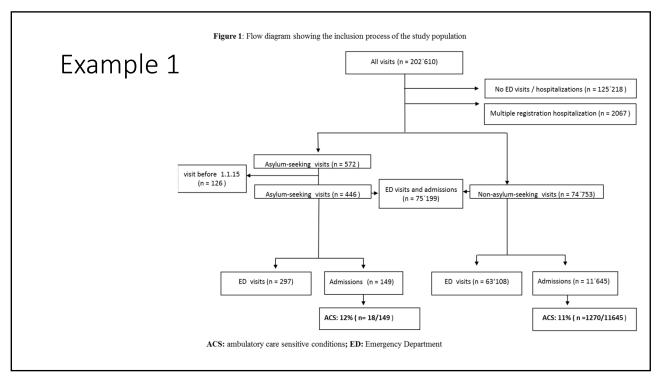
25

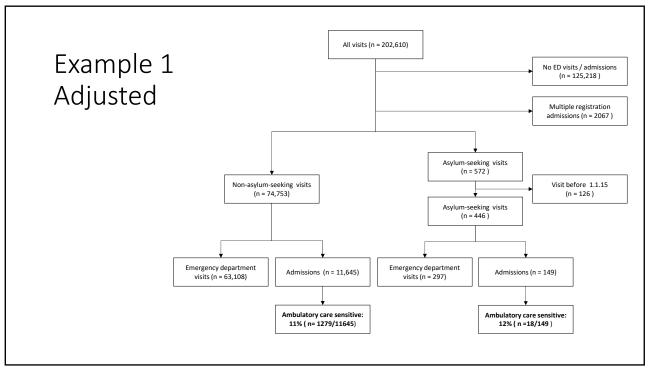
Displaying Quantitative Information

An exploration of Edward R. Tufte's

The Visual Display of Quantitative Information


Jeffrey Nichols Programming Usable Interfaces May 2, 2003

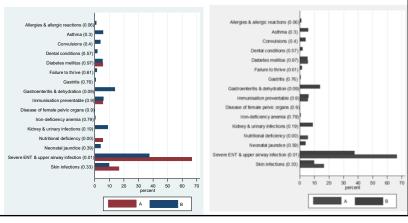

How can we make better graphics?


Tufte presents some principles of data graphics

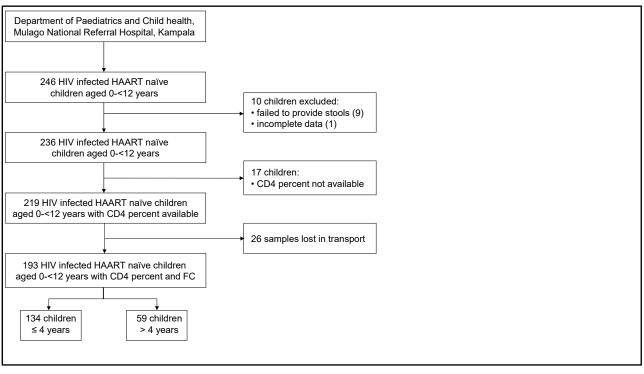
- Above all else, show the data
- Maximize the data-ink ratio
 - Within reason
 - Every bit of ink on a graphic requires a reason
- Erase non-data-ink
- Erase redundant data-ink
- Revise and edit

27

- NEVER use Microsoft Word for ANY graphics EVER!
- For flow charts and similar:
 - Use Microsoft PowerPoint to make the graphics!
 - Learn some of the basics
 - Copy as much as possible
 - If you have made one box, just copy and recycle it for all other boxes



More principles:


- 1. Reduce data "Simplify, simplify, simplify"
- 2. Use a logical order, for instance go from big to small
- 3. Keep comparisons close vertically close
- 4. Self-explaining legend:
 - What, Where, When, Units, Source
 - Avoid the use of abbreviations, reduce the number of footnotes

Use colour according to the audience

- If your reader will read a photocopied version of the article: use B/W
- If you think your readers will read from screen: you may use colour
- Consider Tufte

33

- NEVER accept the output from any statistical software or MS Excel as a final graph!
- They always breach the data-ink rule
- Needs a lot of tidying up
- Pay attention to the look!
 - Use thin lines, 0.5 pt
 - Avoid large empty spaces