Water Power Technologies Office

Energy Efficiency & Renewable Energy

Standard Modular Hydropower Technology Acceleration

Dr. Mark Christian Argonne National Laboratory Management & Operations Contractor

About the Water Power Technologies Office

U.S. DEPARTMENT OF Energy Efficiency & Renewable Energy

WPTO invests in early-stage research to accelerate development of innovative water power technologies while ensuring that long-term sustainability and environmental issues are addressed.

WPTO supports efforts to validate performance and grid-reliability for new technologies, develop and increase accessibility to necessary testing infrastructure, and evaluate systems-level opportunities and risks.

WPTO aggregates, analyzes and disseminates **relevant**, **objective**, **technical information** on water power technologies and related issues to stakeholders and decision-makers.

ENERGY Energy Efficiency & Renewable Energy

HYDROPOWER HIGHLIGHTS

- 80 GW of hydropower capacity 7% of U.S. capacity
- Of the ~77,500 non-powered dams over 50,000 have the potential to be powered, adding 12GW of capacity
- Greenfield development (when excluding federally protected lands, etc.) represents over 65GW of capacity
- Nearly 1.5 GW of capacity added in the last decade but <u>new opportunities often limited by regulations, high costs,</u> <u>and environmental concerns</u>

ENERGY Energy Efficiency & Renewable Energy

HYDROPOWER HIGHLIGHTS

- 80 GW of hydropower capacity 7% of U.S. capacity
- Of the ~77,500 non-powered dams over 50,000 have the potential to be powered, adding 12GW of capacity
- Greenfield development (when excluding federally protected lands, etc.) represents over 65GW of capacity
- Nearly 1.5 GW of capacity added in the last decade but <u>new opportunities often limited by regulations, high costs,</u> <u>and environmental concerns</u>

Digitalization Alignment with the WPTO

U.S. DEPARTMENT OF EI

Energy Efficiency & Renewable Energy

Technical Approach

Challenge: New small low-head hydropower development success hinges on deeper cost reductions and greater environmental compatibility of technology than is presently available.

Solution: Achieve cost reduction through standardization and modularity. Achieve environmental compatibility by prioritizing stream functionality as design objectives for small, low-head hydropower facilities.

Standardization–commercially available advanced technology with predefined, validated, and published capabilities and impacts, including:

- siting methods;
- designs and design reviews;
- permitting, assessment, and licensing procedures;
- simulation models;
- manufacturing, transport, construction, and installation procedures; and
- commissioning, monitoring, and compliance procedures

... to minimize site specificity, project costs, and uncertainty.

Modularity–compatibility and interoperability of standardized technologies in design and operation, including:

- different module types in multiple arrangements to provide adaptability to classes of sites;
- multiple modules to scale up to optimal capacities;
- modeling and technology for intermodule monitoring and control; and
- major maintenance through module swap-out and economies of scale

... to deliver energy and environmental benefits at many different sites.

Environmental Compatibility-

facilities and modules sited, designed, and operated for multiple compatible objectives, including:

- stream functions identified and replicated by module and facility designs and
- monitoring and control systems to analyze and co-optimize stream and energy performance

... to maintain stream functionality, assure environmental compliance, and maximize public benefit.

Technical Approach

U.S. DEPARTMENT OF **ENERGY** **Energy Efficiency & Renewable Energy**

Future components of SMH:

•

- Co-development with water uses
- SMH for non-powered dams
- SMH assessment and regulatory best practices

SMH R&D Targets

- Environmental compatibility and acceptance
- Reduction in levelized cost of energy
- Reduction in capital expense

7 | Water Power Technologies Office

Hydropower Modular Design: A New Approach to Designing and Developing New Hydro

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

The SMH module concept is to:

- Reduce a hydroplant to its basic components
- Define module performance characteristics
- Promote the development of new capabilities and knowledge
- Facilitate system deployment

Module Objectives

Recreational Activities	 Set Difficulty Safe Entrance/Exit Pass Across SMH Foundational Integration Emergency Rescue 	
Fish Movement	 Attract Fish Pass Across SMH Safe Fish Exit 	 SMH Description: Functional Requirements Functional Relationships Module Key Inputs Module Performance Module Key Inputs
Sediment Passage	 Intake Sediment Foundational Integration Pass Across SMH Release Sediment 	
Water Passage	 Safe Passage Passage Needs Entrance Hydraulics Foundational Integration Maintain Hydraulics 	
Energy Generation	 Take in Flow Energy Conversion Release Flow Prep Electrical Power Foundation Integration 	

Technical Approach

<u>SMH Co-Development Strategy</u>: Small hydropower technology development in isolation faces cost and acceptance challenges. Pairing hydropower development with designed improvements in environmental conditions or complementary uses of water can increase chances of success.

• Water quality improvement. Can small modular facilities drive water quality improvements while generating energy?

• **Recreational park.** Can dual purpose hydropower and recreation facilities lead to greater acceptance from stakeholders?

• **Restoration.** Can small modular facilities help restore favorable hydrologic conditions and flow regimes while generating energy?

- Low-flow at existing hydro. Can a standard modular package improve low flow handling while generating energy?
- **Non-powered dam.** Can a modular energy/environmental/recreation solution provide the same benefit?

Image Sources: Creative Commons and Natel Energy (https://www.natelenergy.com/restoration-hydro/)

- Technical support and integration of FOA (facility and module) awardee results into SMH concepts, reports, and tools.
- SMH for non-powered dams (NPD)
 - Adaptation of Exemplary Design Specs for NPDs
 - SMH NPD Explorer online tool
- Scoping, guidance, and tools for SMH co-development classes
 - Standardization and modularity applied to sites/opportunities where energy and environmental/socioeconomic enhancement are complementary
 - Case studies, module-based technologies, modeling tools, and cost-benefit analyses for co-development classes:
 - Water Quality Enhancement
 - Aquatic Recreation Park
 - Stream Restoration
 - Low-flow Releases at Existing Hydropower Facilities
- Best practices for realizing the benefits of SMH design and technology in environmental assessment and regulatory proceedings

Thank you for your attention. Questions?

Project Lead: Marisol Bonnet marisol.bonnet@ee.doe.gov

How WPTO's Hydropower Portfolio Aligns with EERE U.S. DEPARTMENT OF ENERGY Energy Efficiency & Renewable Energy

Environmental Attributes of NSD Sites with <10MW Potential

The SMH Explorer

Energy Efficiency & Renewable Energy

Generation Module

Figure 3. Conceptual schematic of the specific objectives of a generation module.

Fish Passage

Recreation Passage

ENERGY Energy Efficiency & Renewable Energy

Figure 33. Conceptual schematic of the specific objectives of a recreation passage module.

Sediment Passage

ENERGY Energy Efficiency & Renewable Energy

Figure 25. Conceptual schematic of the specific objectives of a sediment passage module.

Water Passage

Figure 42. Conceptual schematic of the specific objectives of a water passage module.