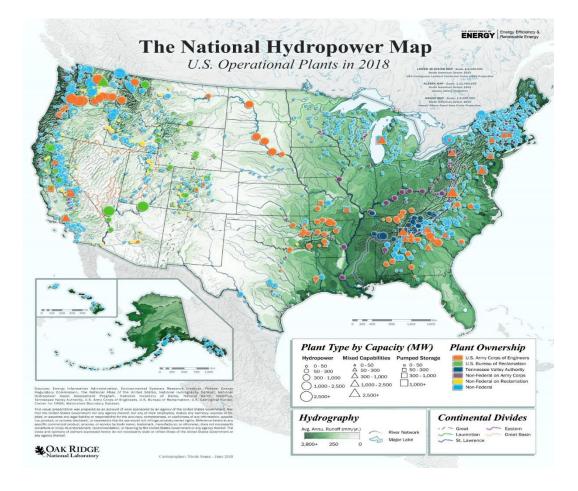


Energy Efficiency & Renewable Energy

HydroWIRES Initiative Overview: A New Role for Hydropower

Hydro Power Summit Trondheim, Norway February 5, 2020 Samuel Bockenhauer, Ph.D.

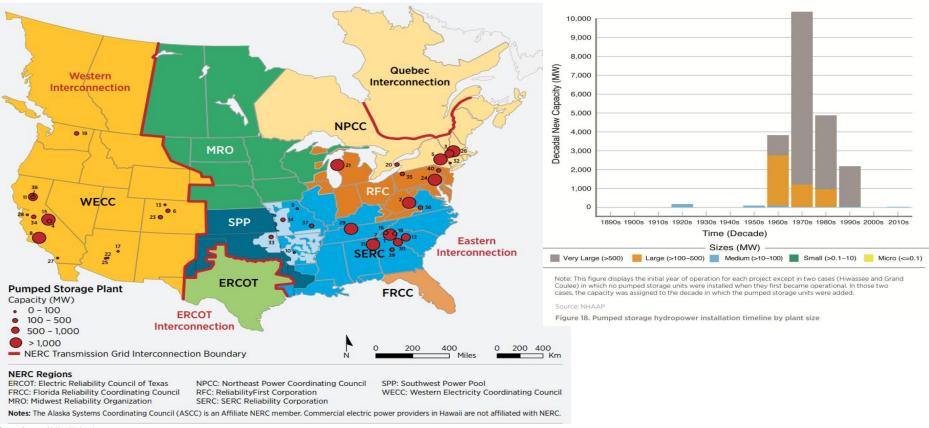
HydroWIRES Initiative Lead Water Power Technologies Office (https://energy.gov/hydrowires)



- Motivation and Background: Changing roles for hydropower in a changing power system
- DOE-WPTO's HydroWIRES research initiative
- Examples of HydroWIRES projects you'll hear about today
- Forthcoming reports and next steps

Hydropower in the U.S.

Energy Efficiency & Renewable Energy


HYDROPOWER HIGHLIGHTS

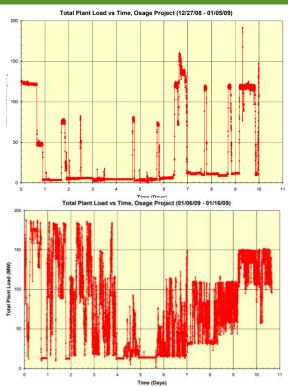
- 80 GW of hydropower capacity 7% of U.S. capacity
- 22 GW of pumped storage capacity greater than 95% of U.S. energy storage capacity
- Existing plants provide low-cost and reliable generation, 87,542 jobs across 48 states
- **49%** of hydro capacity owned by the U.S. Government
- Nearly 1.5 GW of capacity added in the last decade but new opportunities often limited by regulations, high costs, and environmental concerns
- \$8.9 billion in refurbishments and upgrades was invested across 158 hydropower dams in the U.S. between 2007-2017
- Large existing resource, including the vast majority of grid-scale storage
- Significant complexity and variety in the fleet

Pumped storage hydropower (PSH)

U.S. DEPARTMENT OF

Energy Efficiency & <u>Renewable Energy</u>

Source: Argonne National Laboratory


Figure 2-41. Existing pumped storage hydropower plants in the United States

About 22 GW of PSH capacity deployed in the US, but no new large projects in the last 20 years

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

Traditional Hydro: from steady or predictable patterns to fast and frequent ramping

Weekly generation: (Osage Power Plant, MO)

Before participation in ancillary services market

After participation in ancillary services market

Pumped Storage: from day/night arbitrage to fast response

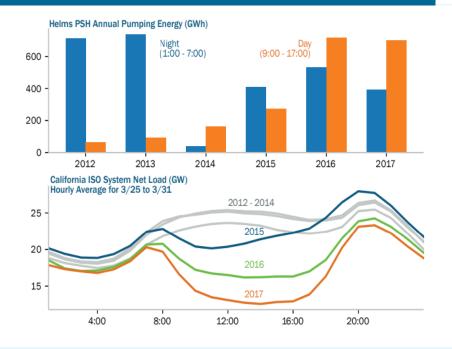
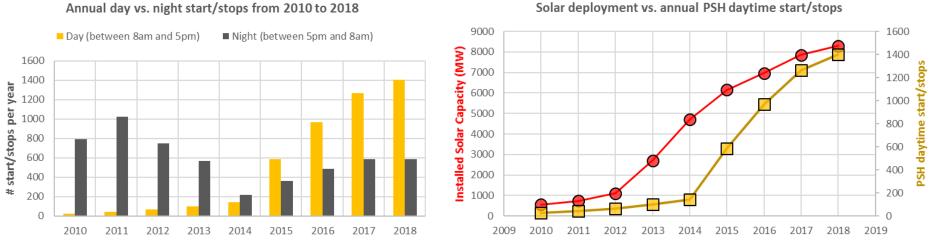



Figure 34. Annual pumping energy consumption by Helms PSH versus CAISO net load in the last week of March (2012-2017)

U.S. DEPARTMENT OF ENERGY

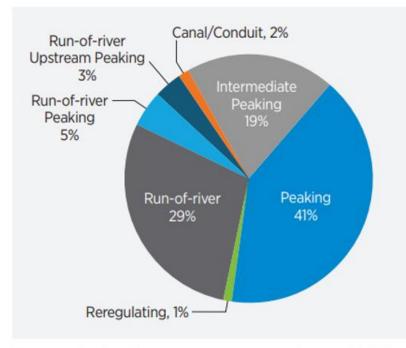
Omarugawa Pumped Storage Power Station:

Energy Efficiency & Renewable Energy

Omarugawa Pumped Storage Power Station: Annual day vs. night start/stops from 2010 to 2018

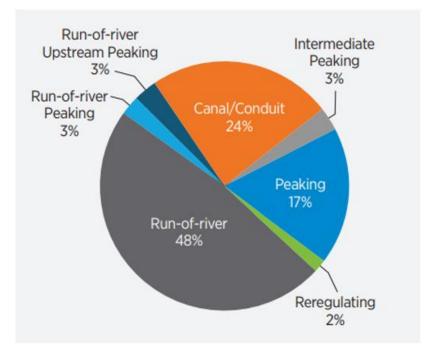
- The Omarugawa PSH plant in Kyushu, Japan now averages ~4 start-stops per day, increasing in close correlation with installed solar PV capacity
- Other countries are experiencing similar changes, suggesting opportunities for sharing knowledge

Pumped Storage Hydropower (PSH) can provide essentially all grid services


- Large (>100 MW), long-duration storage
- Historically built for daily swings in load and as a companion to large thermo-electric generators
- Can provide nearly all possible grid services at low levelized cost
- Not all of these services are compensated in organized markets, but all have value in some situations
- Accurate <u>valuation</u> of these services (for PSH as well as hydropower and other resources) is a fundamental challenge

	PSH Contribution
1	Inertial response
2	Governor response, frequency response, or primary
	frequency control
3	Frequency regulation, regulation reserve, or secondary
	frequency control
4	Flexibility reserve
5	Contingency spinning reserve
6	Contingency non-spinning reserve
7	Replacement/Supplemental reserve
8	Load following
9	Load leveling/Energy arbitrage
10	Generating capacity
11	Reduced environmental emissions
12	Integration of variable energy resources (VERs)
13	Reduced cycling and ramping of thermal units
14	Other portfolio effects
15	Reduced transmission congestion
16	Transmission deferral
17	Voltage support
18	Improved dynamic stability
19	Black-start capability
20	Energy security

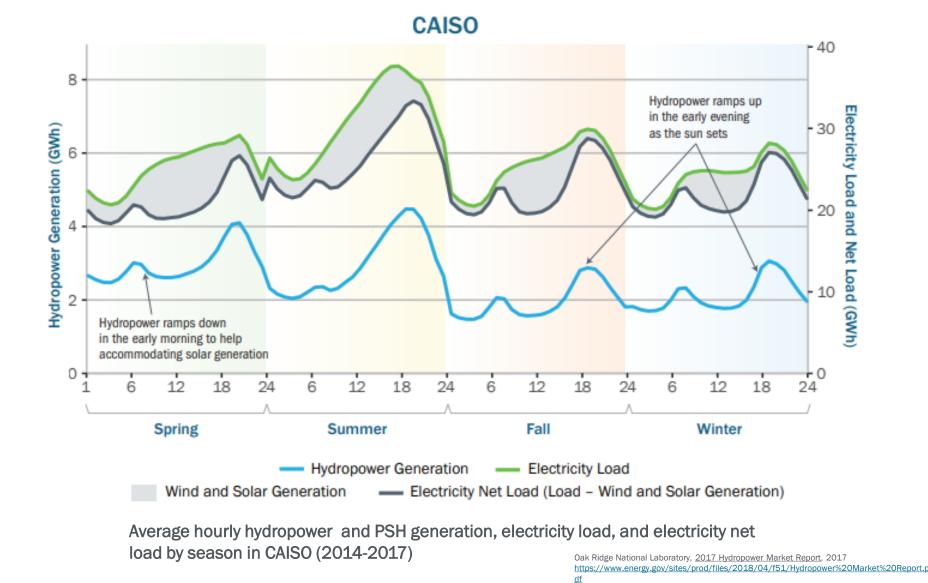
The US conventional hydropower fleet can also provide significant flexibility


ENERGY Energy Efficiency & Renewable Energy

- About 70% of hydropower capacity has capabilities for flexible operation
- But operations vary by plant; flexibility is mostly concentrated in larger projects

Source: National Hydropower Asset Assessment Program FY15 Plant Database [15]

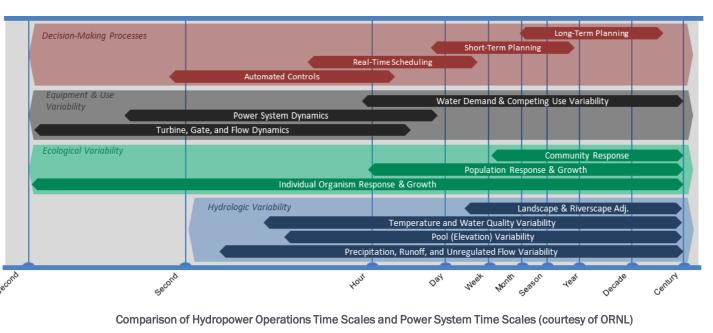
Figure 2-9. Distribution of operating modes for hydropower facilities, by capacity



Source: National Hydropower Asset Assessment Program FY15 Plant Database [15]

Figure 2-8. Distribution of operating modes for hydropower facilities, by number of projects

Hydropower provides load following in all ISO/RTO markets


U.S. DEPARTMENT OF

Challenges in representing hydropower in power system models

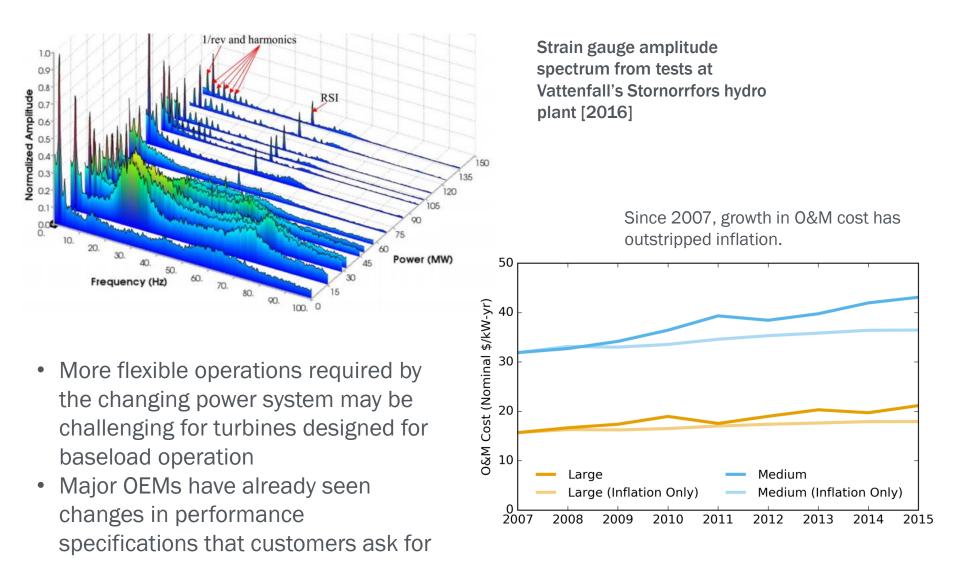
 Spatial, temporal, unit, and computational complexity can create a disconnect between water management and grid models

Hydropower representation in current models does not capture complexity, diversity, and changed operational paradigm of the fleet

U.S. DEPARTMENT OF

ENERGY

Energy Efficiency &

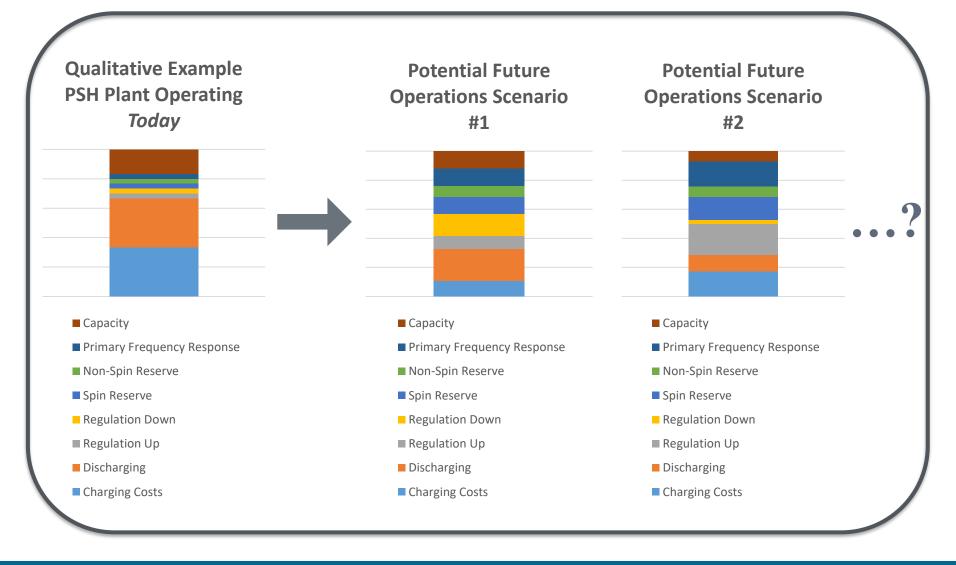

Renewable Energy

Workshop: Hydropower in Production Cost Models Salt Lake City, March 2019 Consensus on the need for:

- Improvements in the organization of publicly available data;
- · Improved approaches for validation and characterizing uncertainty;
- New modeling frameworks that can address multiple competing objectives, and;
- Increased collaboration among the hydropower and power grid modeling communities

More flexible operations have implications for equipment design and O&M

U.S. DEPARTMENT OF ENERGY


The Challenge: Untapped Opportunities for Hydropower U.S. DEPARTMENT OF and PSH to Support a Rapidly Evolving Grid

- As the electricity system is changing rapidly, there is limited understanding of which services will be needed, as well as limited ability to accurately value those services.
- Hydropower and PSH capabilities are bounded by the interaction of machines, water, and institutions, and some of these bounds may result from legacy decisions that did not consider evolving grid needs.
- •There are gaps in information regarding how to optimize hydropower and PSH operations and planning in coordination with other resources.
- Current hydropower and PSH technology may not be designed for flexible operation.

Energy Efficiency &

Renewable Energy

HydroWIRES Initiative

- Given the rapid changes occurring in the U.S. electric system—and associated challenges and opportunities—WPTO has launched a new hydropower-grid research initiative titled HydroWIRES: Water Innovation for a Resilient Electricity System.
- The mission of HydroWIRES is <u>to understand</u>, <u>enable</u>, <u>and improve</u> <u>hydropower's contributions to reliability</u>, <u>resilience</u>, <u>and integration</u> in a rapidly evolving electricity system.
- HydroWIRES includes ~\$15M annual funding for modeling, analysis, technical assistance, and technology R&D to inform decisionmakers and improve their capabilities.

https://energy.gov/HydroWIRES

Organization of Research Areas ENERGY

Energy Efficiency & Renewable Energy

Value under Evolving System Conditions Understand the needs of the rapidly evolving grid and how they create opportunities for hydropower and PSH.

"What will the grid need?"

Capabilities and Constraints

Investigate the full range of hydropower's capabilities to provide grid services, as well as the machine, hydrologic, and institutional constraints to fully utilizing those capabilities.

What can hydropower do?"

Operations and Planning

Optimize hydropower operations and planning—alongside other resources—to best utilize hydropower's capabilities to provide grid services.

"How can hydropower best align what it can do with what the grid will need?"

Technology Innovation

Invest in innovative technologies that improve hydropower capabilities to provide grid services.

"What new technology could expand what hydropower can do to meet grid needs?"

HydroWIRES Initiative Organization

- To support HydroWIRES research efforts and sharing of ideas, we have convened a collaborative group of national lab researchers to support the research areas.
- These lab researchers provide leadership and strategic direction to inform the research portfolio and build connections within WPTO and to broader DOE efforts.

and PSH.

"What will the grid need?"

Organization of Research Areas

Capabilities and Constraints

Investigate the full range of hydropower's capabilities to provide grid services, as well as the machine, hydrologic, and institutional constraints to fully utilizing those capabilities.

What can hydropower do?"

Operations and Planning

Value under Evolving System Conditions

Understand the needs of the rapidly evolving grid

and how they create opportunities for hydropower

Optimize hydropower operations and planning—alongside other resources—to best utilize hydropower's capabilities to provide grid services.

"How can hydropower best align what it can do with what the grid will need?"

Technology Innovation

Invest in innovative technologies that improve hydropower capabilities to provide grid services.

"What new technology could expand what hydropower can do to meet grid needs?"

HydroWIRES Projects in Today's Sessions

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

Hydropower Value Study

PSH Valuation

Value under Evolving System Conditions Understand the needs of the rapidly evolving grid and how they create opportunities for hydropower and PSH.

"What will the grid need?"

Capabilities and Constraints

Session 1

Investigate the full range of hydropower's capabilities to provide grid services, as well as the machine, hydrologic, and institutional constraints to fully utilizing those capabilities.

No-Powerhouse

PSH

What can hydropower do?"

A) Environmental-**Flexibility Tradeoffs**

Optimize hydropower operations and planning-alongside other resources-to best utilize hydropower's capabilities to provide grid services.

"How can hydropower best align what it can do with what the grid will need?"

Technology Innovation

Operations and Planning

Invest in innovative technologies that improve hydropower capabilities to provide

grid services.

FAST Prize

Ternary PSH

"What new technology could expand what hydropower can do to meet grid needs?"

Shell Hydro

Battery PSH

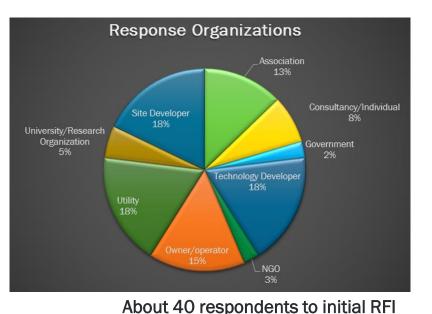
Geomechanical Storage

GLIDES PSH 18 | Water Power Technologies Office

B1) Dynamic Hydro

Classification for PCMs

B2) Water


Model/PCM

Integration

Session 2

Stakeholder Engagement, Outreach, and Dissemination

- RFI to solicit feedback on priorities and direction, issued February 2018
- HydroWIRES announced by Assistant Secretary Simmons in April 2019
- Engagement with hydropower and broader power system communities
 - Waterpower Week
 - HydroVision International
 - NHA Regional Meetings
 - Northwest Hydropower Association
 - Energy Storage Integration Group
 - CEATI working groups
 - EPRI technical workshops
 - IHA World Hydropower Congress
 - IEA Hydropower Technical Collaboration Programme (Annex IX)
- New RFI on the HydroWIRES Research Roadmap to be released March 2020
- "Quick Wins" mechanism to enable flexibility to stakeholder needs
- Also planning targeted technical workshops with external experts

ENERGY Energy Efficiency & Renewable Energy

HydroWIRES Reports (more coming soon!)

Energy Efficiency & ENERGY **Renewable Energy**

Published:

- **Hydropower Plants as Black Start** Resources
- **Energy Storage Technology and Cost Characterization Report**

Near-Final Drafts:

- A review of storage in transmission planning (white paper)
- A review of pumped storage market ٠ participation and FERC Order 841 (white paper)
- **Closed-loop pumped storage** ٠ environmental effects (technical report)
- Hydropower-battery hybrids (technical report)
- **NREL** ternary pumped storage • (technical report)
- Fast commissioning challenge ٠ baseline report (technical report)

• Hydropower Value Study (HVS) series of reports:

U.S. DEPARTMENT OF

- Hydropower Value Study Executive Summary
- Historical Analysis of Hydropower Operations in MISO
- Historical Analysis of Hydropower Operations in WECC
- Historical Analysis of Hydropower Operations in **ISONE**
- Case Study Chelan Public Utility District
- Case Study Tennessee Valley Authority
- Value of Non-monetized Services by **Hydropower**
- The Value of Water
- Power Systems vs. Hydropower Operational Timeframes
- Hydropower Capabilities & Technology Gap + **Cost Analysis**

https://energy.gov/HydroWIRES

HydroWIRES Partners and Awardees

U.S. DEPARTMENT OF

Questions?

Samuel Bockenhauer, Ph.D.

HydroWIRES Initiative Lead | Hydropower Technology Manager

EERE Water Power Technologies Office

U.S. Department of Energy

Samuel.Bockenhauer@ee.doe.gov

https://energy.gov/HydroWIRES