

Overview of the Hydropower Value Study

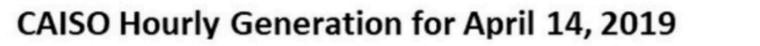
Hydropower Summit, Trondheim, Norway February 5, 2020

Abhishek Somani

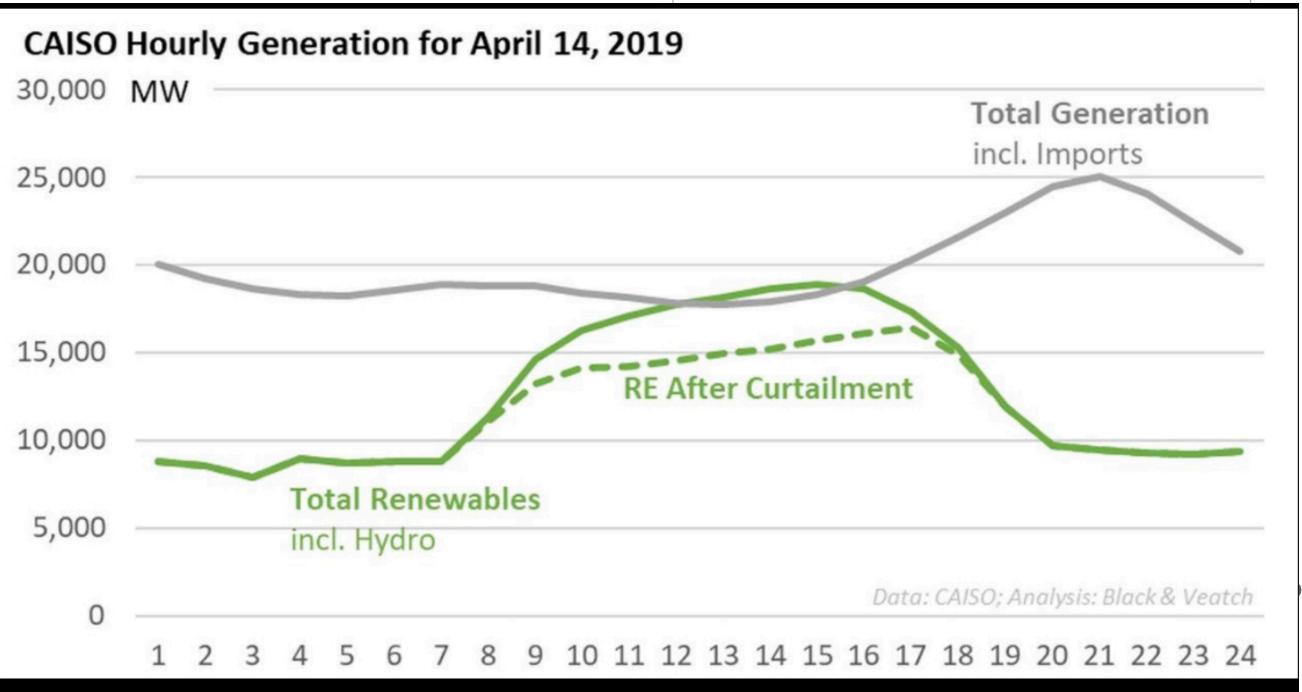
Senior Economist

PNNL is operated by Battelle for the U.S. Department of Energy

Project Overview


- Motivating questions:
 - How does hydropower contribute to grid services?
 - What services/capabilities will be needed by the grid in the future?
 - Can hydropower provide the services based on technical capabilities and cost?
- Project intent:
 - Foundational work to understand present hydropower operations trends, future expected changes, and hydropower capabilities analysis
- Project design:
 - Involved extensive data collection and analysis on market participation trends, operational practices, and technological capabilities
 - Did <u>not</u> involve design of new market rules, hydro operations models/tools
- Outcomes:
 - Understanding of hydropower's evolving value proposition
 - Understanding of high-impact future research needs research roadmap

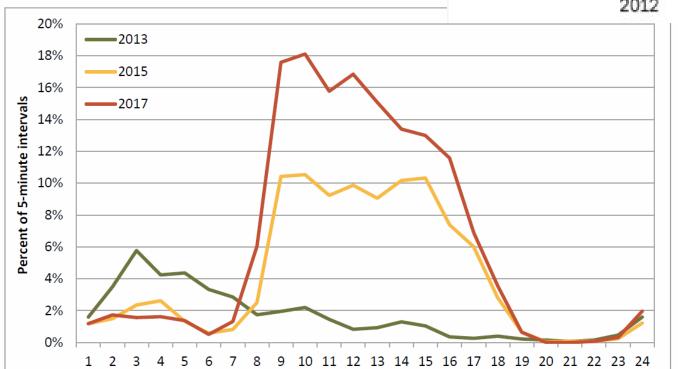
Project Tasks

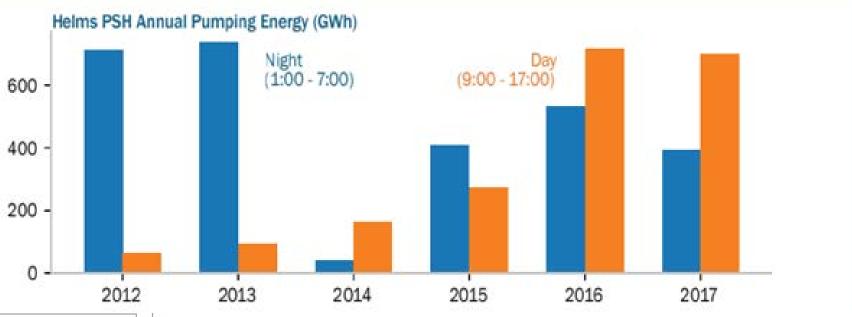

- Task 1 Current landscape review
 - Market participation trends in different regions
 - Correlation analysis with other system variables, such renewables
 - Estimation of value from services not presently monetized, such as inertia and primary frequency response
 - Case studies on water management practices, and their impact on operations
- Task 2 Future system needs & hydropower value
 - Future power system scenarios and resulting value drivers for hydropower
 - Hydropower value proposition in future based on system needs
- Task 3 Hydropower capabilities & gap analysis
 - Comparison of current power system and hydro operations timelines
 - Develop understanding of plant/unit-level capabilities and constraints, based on various factors

Changes on the Horizon: CAISO Net Load and **Renewables Supply**

Pacific

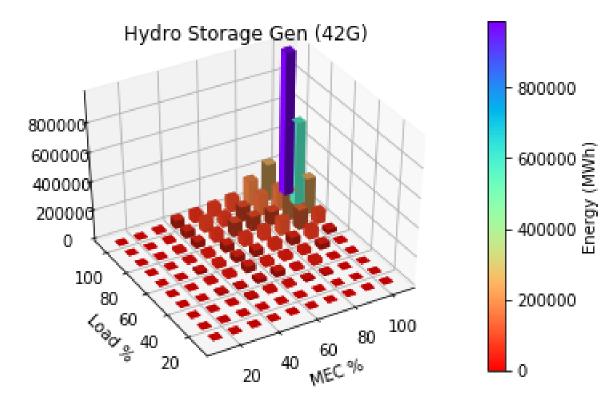
Northwest




Changing Operations of PSH due to Changing Grid Conditions – CAISO Example

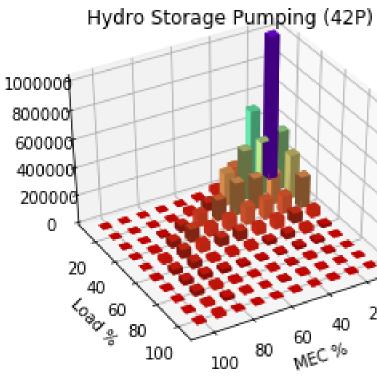
PSH conventionally operated in day-night arbitrage patterns, but the patterns are now changing, presumably to provide other grid services

Pacific

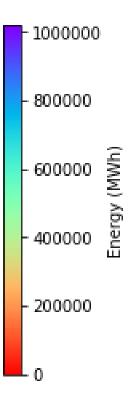

Northwest

Are the increased day-time pumping operations at Helms plant due to increase in negative price during the day-time hours, corresponding to periods with high PV production?

PSH Operations in MISO are still based on **Arbitrage due to Load Patterns (NOT Wind)**



Pacific


Northwest

Pumping: PSH plants operate in pumping most of the times during low price periods, as expected

Generation: PSH plants generate most of the times during high price periods, as expected


20

Mid-Continent ISO Hydropower Revenue Trends for Different Grid Services

- A slight decline in revenues has been observed, which is consistent with declining energy prices ullet
- Energy is still the primary source of overall revenue mix ullet

e Daily ply	Estimate of Total Revenue (\$M)
MW	\$2,4
MW	\$1,6
MWh	\$129
MWh	\$345

Hydropower Provides Flexible Resource Adequacy Capacity in CAISO

	Category 1 – Base Ramping	Category 2 – Peak Ramping	S
Foomersie Did Muset		5 hour block	
Economic Bid – Must offer Obligation	5:00AM – 10:00PM	12 PM to 5 PM for May – Septer 3 PM- 8 PM for January- April ar	
		Minimum Ohne of Effective	N /1:

Pacific

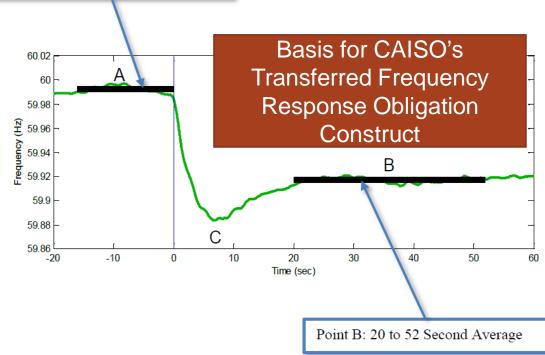
Northwest

Resource type	Catego	ory 1	Category 2		
Resource type	Average MW	Total %	Average MW	Total %	
Gas-fired generators	8,890	76%	293	25%	
Use-limited gas units	1,665	14%	819	71%	
Hydro generators	1,099	9%	47	4%	
Geothermal	28	0.2%	0	-	
Energy Storage	17	0.1%	1	0.1%	
Total	11,700	100%	1,160	100%	

Other limitations	No limitations that translate to less than the daily requirements requirements requirements		r
Examples of types of resources		Use-limited conventional gas fired generation, solar, conventional gas fired peaking resources	reso

3 – Imping				
ck				
er October-December				
Category 3				
Total %				
3%				
3%				
3% 72%				
3% 72%				

Must be capable of responding to at least 5 dispatches per month Short discharge battery source providing regulation and demand response resources



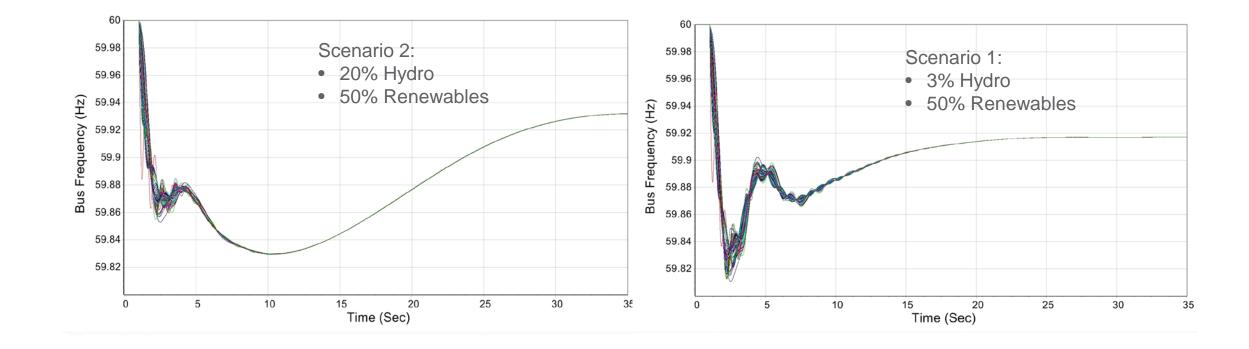
Compensation for Fast Frequency/Primary Frequency Response

	Ireland	UK	Nordic	Quebec	South Australia	ERCOT
Monitor inertia & possible contingencies in Real-Time	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Forecasts Inertia from DA into Real-Time	\checkmark	\checkmark				\checkmark
Dynamic Assessment of Reserves based on inertia conditions and largest resource contingency		\checkmark				\checkmark
Limit RCC based on inertia conditions	\checkmark	\checkmark		\checkmark	\checkmark	
Synchronous Condensers (for inertia)	\checkmark	\checkmark			 ✓ (particularly looking at high inertia SCs) 	
Enforce minimum inertia limit	\checkmark	\checkmark			✓ (for minimum inertia req.)	\checkmark
Inertia market/auction/service inertia	\checkmark				√ (for above minimum inertia levels)	
Faster Responding Reserves	FFR	Enhanced Frequency Response Service		Synthetic inertia from wind	"Contingency" FFR (frequency trigger) and "Emergency" FFR (direct event detection)	Load Resources providing RRS

Table 11: Recommended Resource Contingency Protection Criteria				
Interconnection	Resource Contingency	Basis	MW	
Eastern	Largest Resource Event in Last 10 Years	August 4, 2007 Disturbance	4,500	
Western	Largest N-2 Event	2 Palo Verde Units	2,740 ⁴⁶	
ERCOT	Largest N-2 Event	2 South Texas Project Units	2,750 ⁴⁷	

Point A: -16 to 0 Second Average

Planned mitigation measures are shown in blue, while already existing mitigation measures are shown in black; Source: ERCOT


NERC BAL-001 Standard: Frequency Response Measure

Hydropower Operations in a High Inverter-based Resources Future: Inertial and PFR

Pacific

Nor

Hydropower responds reliably during frequency arrestation period (0-5 sec) and during recover period (>20 sec), but can be slow to respond in the interim

FERC Order 842 (2018) will require all new resources to reserve headroom for frequency response, but the exact requirements are yet to be determined

Future work and collaboration opportunities

- Need to fully understand the evolving value streams
 - How will the grid operational requirements change in future
 - How will that change the reliability and performance standards/requirements
 - How will that impact the definitions and requirements for grid services
 - What are the implications for market design(s) of the future
- Collaboration opportunities:
 - Ongoing: IEA Annex IX whitepaper on comparisons of markets across countries
- Please provide inputs on additional topics along these lines \rightarrow Cost vs. Price vs. Value vs. Compensation