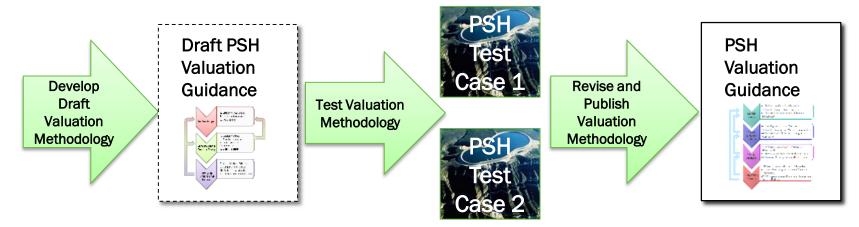


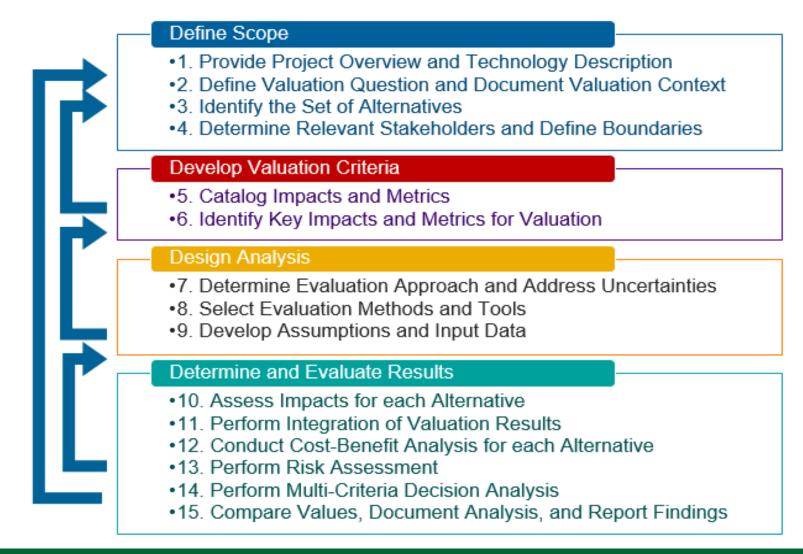
Valuation Guidance and Techno-Economic Studies for PSH

Samuel Bockenhauer, DOE – HydroWIRES Initiative Lead Vladimir Koritarov, Argonne National Lab – Project Principal Investigator



Project Goals and Objectives

Objective: Advance the state of the art in the assessment of value of PSH plants and their role and contributions to the power system


Specific goals:

- 1.Develop a comprehensive and transparent valuation guidance that will allow for consistent valuation assessments and comparisons of PSH projects
- 2. Test the PSH valuation methodology by applying it to two selected PSH projects
- 3. Transfer and disseminate the PSH valuation guidance to the hydropower industry, PSH developers, and other stakeholders

Proposed PSH Valuation Process

A Cost-Benefit and Decision Analysis Valuation Framework

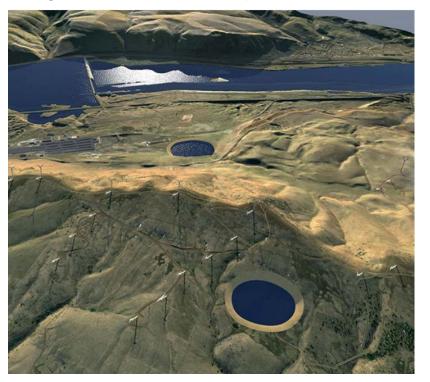
PSH Valuation Guidance Development Goals

- Objective and comprehensive methodology
- Consistent and repeatable valuation approach
- Transparent valuation process and results
- Can be applied to different types and sizes of PSH plants
- Accounts for various services and contributions that PSH plants provide to the grid
- Considers PSH benefits and costs over time
- Applies to both traditional and restructured market environments
- Can be used by stakeholders with different perspectives
- Publicly available for use by hydropower industry and stakeholders

The Project Team is Collaborating with Two Industry Partners

Absaroka Energy

Banner Mountain PSH


- 400 MW, quaternary technology
- Closed loop
- Site near Casper, WY

National Grid & Rye Development

Goldendale Energy Storage Project

- 1,200 MW, adjustable speed technology
- Closed loop
- Site just north of OR/WA border

TES Modeling Flow for Banner Mountain and Goldendale

ANL:

- Using AURORA
- Focus on 2028/2038
- Scenarios
 - Baseline
 - With PSH
 - With PSH and low battery costs
 - · With high NG prices
 - With aggressive carbon reduction
- Generation builds passed on to NREL

Capacity Expansion

Production Cost Modeling

NREL:

- Using PLEXOS
- Results provided to INL and PNNL
- Scenarios Same as Capacity Expansion
 - · Plus sensitivities
- Generator Status and generation provided to INL and PNNL for Power Flow Model
- LMPs and Congestion cost provided PNNL for transmission deferrals

Power Stability Analysis

INL:

- Using PSSE
- Analyzing power stability and voltage support

PNNL:

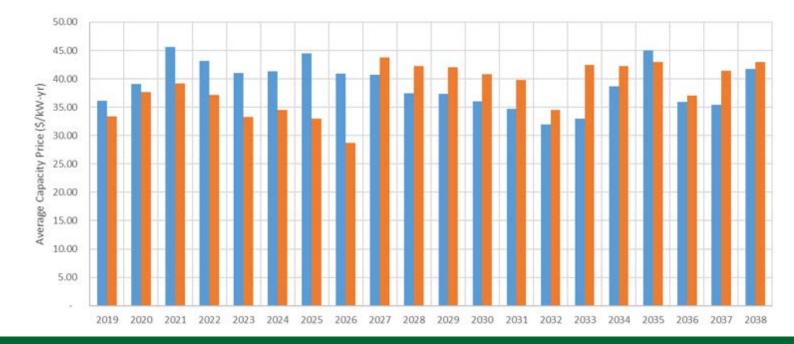
- Using PSSE and GAMS
- Analyzing and valuing transmission deferrals and congestion relief

Transmission Analysis

Techno-Economic Studies for Banner Mountain and Goldendale

A variety of analyses are carried out to assess the costs and benefits of various PSH services and contributions to the grid

- ANL: Capacity valuation using AURORA model
- **ANL:** Historical electricity market analysis (PMAT)
- **ANL:** Black start service valuation (developing own model)
- NREL: Value of PSH ancillary services: regulation service, contingency reserves, and flexibility reserves (PLEXOS)
- INL: Power system stability services: inertial response, governor response (primary frequency control), transient and small signal stability, voltage support (PSSE)
- NREL: PSH impacts on power system cycling and ramping costs (PLEXOS)
- ORNL: Potential cost and performance impacts of increased PSH cycling and ramping operations (e.g., increased wear and tear of PSH units)
- NREL: Other system-wide effects of PSH operations (e.g., PSH impacts on system production costs, integration of variable energy resources, power system emissions) (PLEXOS)
- PNNL: PSH transmission benefits (congestion relief, transmission investments deferral) (PSSE)
- ORNL: PSH non-energy services (e.g., water management, socioeconomic benefits, and env. impacts)

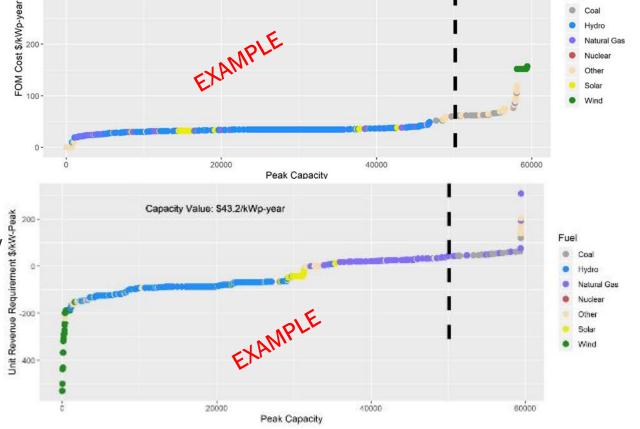

Techno-Economic Analysis Example – Capacity Valuation

- Goal is to determine long-term system value of PSH capacity
- Capacity expansion analysis for the WECC region using AURORA model
- Baseline expansion plan 2019-2043 (~30 hours run time)
- Alternative plans with Banner Mountain and Goldendale PSH

Sensitivities considered: natural gas price, load growth, technology costs,

retirements, etc.

Sample capacity value results:


Capacity Valuation

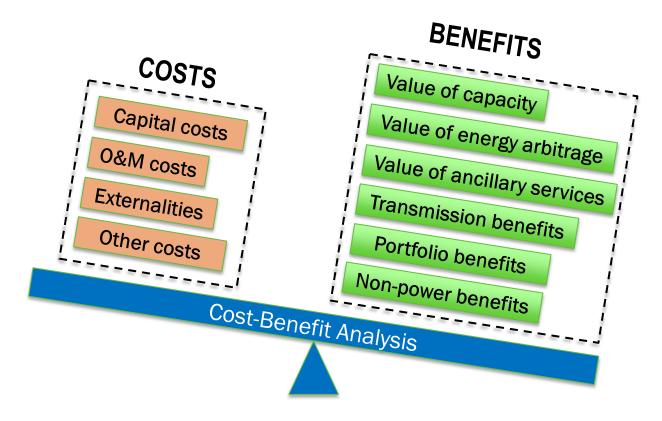
Unit Cost Approach

- Order units based on fixed cost per unit of firm capacity
 - With and without capital costs
 - Intersection of supply curve and PRM sets the capacity value

Unit Revenue Approach

- Order units based on revenue requirement per unit of firm capacity
 - Revenue required for unit to obtain zero profit in a given year
 - Intersection of supply curve and PRM sets the capacity value

Capacity Value: \$59.92/kWp-year


System Cost Approach

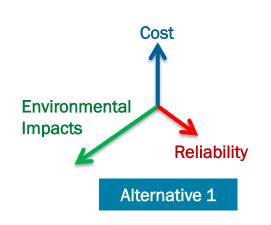
- Determine system cost in a reference scenario and also with each PSH project
 - Capacity valuation is difference between the system cost with and without the PSH project
 - Does not consider capital costs
 - Therefore, a capacity value that exceeds annualized capital costs may support project development from a neutral perspective

300 -

PSH Valuation Framework – Cost-Benefit Analysis

The results of various techno-economic studies will provide inputs for Cost-Benefit Analysis (CBA)

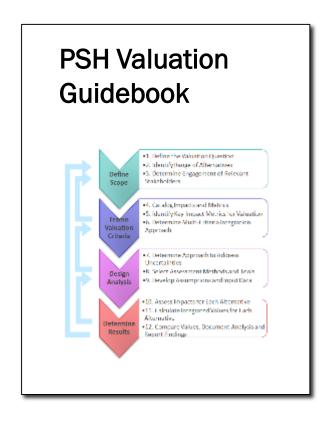
CBA will be used to calculate the net-present value (NPV), benefit-cost (B/C) ratio, etc.


PSH Valuation Framework – Multi-Criteria Decision Analysis


Choosing among different alternatives with multiple attributes

- Many PSH impacts are not easily monetized and have to be expressed in physical units or qualitatively
- How to compare different alternatives that are described by both monetized and non-monetized impacts?
- A decision-support system can help decision-makers choose among different alternatives defined by multiple attributes

Tradeoffs
Among
Objectives



Which alternative is better?

Final Product of the Study: A Guidebook for Valuation of PSH Projects

- Draft PSH Valuation Guidebook will be revised and improved based on the experience gained during the two test case studies
- The revised final PSH Valuation Guidebook will be published and disseminated to hydropower industry and stakeholders
- A PSH Valuation Tool will be developed in a companion project

Future Work

Develop PSH Valuation Tool

Year 1

- Review valuation models and identify key attributes in successful models
- ▶ Define basic model structure
- ► Acquire stakeholder input through TAG participation, discussion at HydroVision, and through follow-on interviews
- ► Issue final report with model recommendations.

Year 2

- Model development
- Model testing and review
- Stakeholder engagement
- ► Final model with User's Guide

Collaboration with Technical Advisory Group (TAG) and NARUC

Technical Advisory Group:

Denis Bergeron	Maine PUC
Norman Bishop	Knight Piesold
Brent Buffington	SCE – Southern California Edison
Wei Dang	PSE – Puget Sound Energy
Peter Donalek	Stantec
Christine Ericson	Illinois Commerce Commission
Don Erpenbeck	Stantec
Robert Fick	LADWP
Scott Flake	Scott Flake Consulting
Levi Gilbert	PG&E – Pacific Gas & Electric

Edward Hansen	PG&E – Pacific Gas & Electric
Elaine Hart	PGE – Portland General Electric
Udi Helman	Helman Analytics
Michael Manwaring	McMillen Jacobs Associates
Jay Mearns	PG&E – Pacific Gas & Electric
Denis Obiang	LADWP
Aidan Tuohy	EPRI
Bruno Trouille	Mott McDonald
Robert Williams	PSE – Puget Sound Energy

NARUC (National Association of Regulatory Utility Commissioners) is assisting the Project Team in coordinating TAG activities and in industry outreach.

- Danielle Sass Byrnett
- Kerry Worthington
- Dominic Liberatore

Questions?

Samuel Bockenhauer, Ph.D.
HydroWIRES Initiative Lead | Hydropower Technology Manager
EERE Water Power Technologies Office
U.S. Department of Energy
Samuel.Bockenhauer@ee.doe.gov

https://energy.gov/HydroWIRES