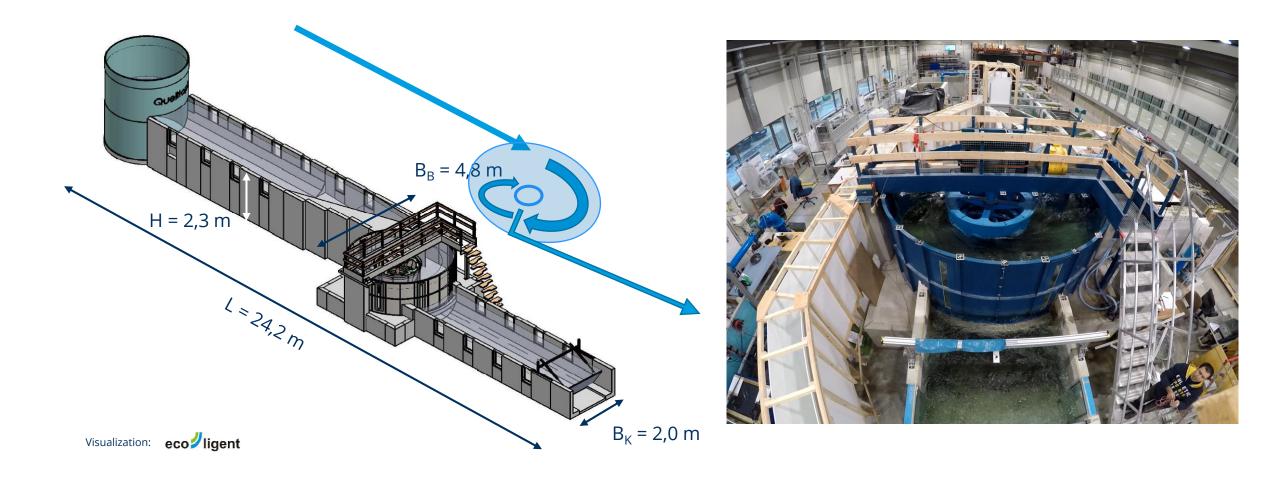


<u>Torsten Heyer</u>, Nadine Mueller & Juergen Stamm Institute for Hydraulic Engineering and Technical Hydromechanics (IWD)

Ethohydraulic Investigations in a Water Vortex Power Plant (VPP)

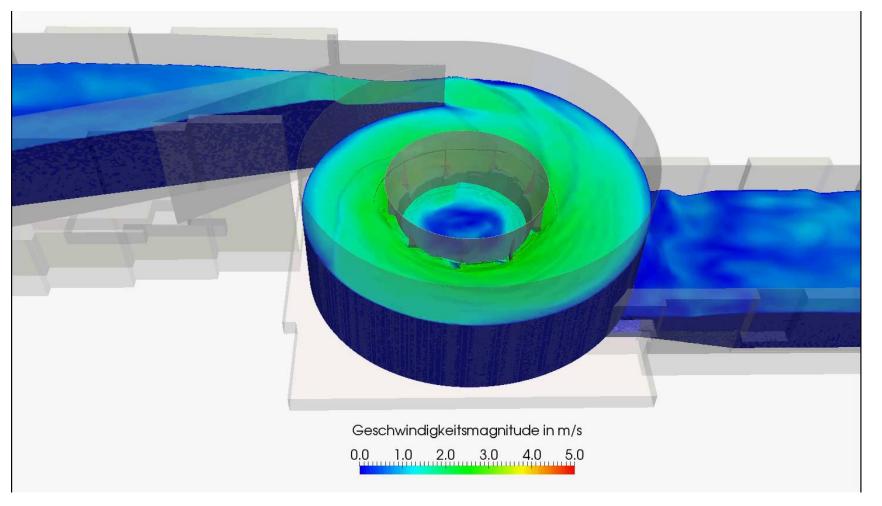
Co-Authors: Christian Jaehnel (IWD); Falko Wagner, Peter Warth, Mansour Royan, Andreas Lindig (IGF Jena)

HYDROPOWER SUMMIT 2020 Breakout Session "Environmental Conditions" February 05 - Trondheim, Norway


Outline

- Water Vortex Power Plant Test Site
- Ethohydraulic Investigations
- Conclusions and Outlook

Experimental Setup of Water Vortex Power Plant (VPP)



HYDRO SUMMIT 2020 – Trondheim, Norway "Ethohydraulic Investigations in a VPP" – Torsten Heyer Bundesministorium für Bildung und Forschung WACHSTUMSKERNE UNTERNEHMEN@ EINTERNESCION

Numerical Simulation OpenFoam

HYDRO SUMMIT 2020 – Trondheim, Norway "Ethohydraulic Investigations in a VPP" – Torsten Heyer

- Objective: Analysis of migration behaviour (ascent & descent) of life fish through the turbine
- **1:1 laboratory model** for ethohydraulic investigations
- VPP: 9 blades, $Q_{max} = 710 \text{ l/s}$, n = 24 rpm, $\Delta h \cong 1 \text{ m}$

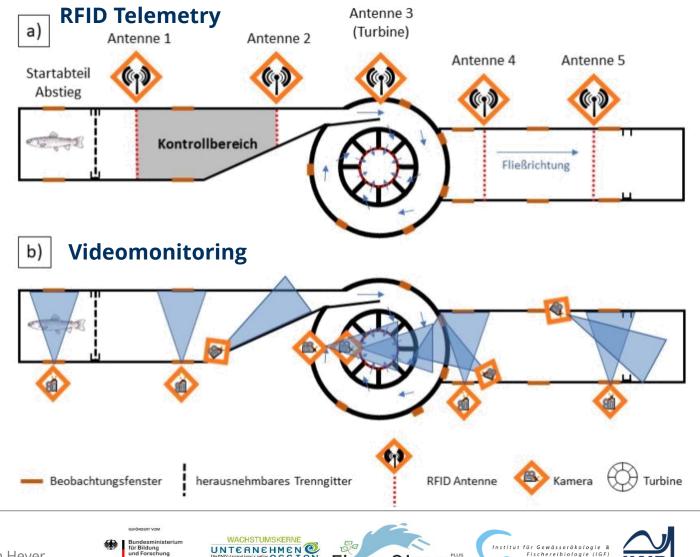
Minnows attempting to ascent to the upper channel at 700 l/s and 27 rpm

Trout attempting to descend through the VPP at 700 l/s and 27 rpm

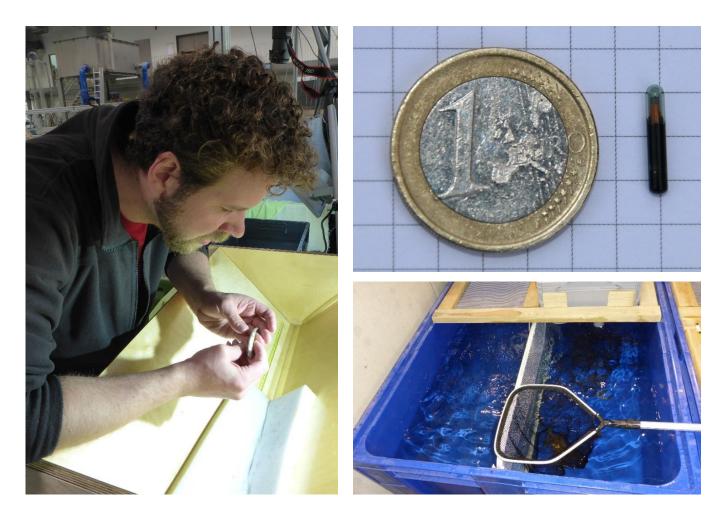
HYDRO SUMMIT 2020 – Trondheim, Norway "Ethohydraulic Investigations in a VPP" – Torsten Heyer Bundesministerium für Bildung und Forschung WACH UNCE A Bie IMV-I unsetting

Video: UvGU Magdeburg,

ISUT (Cleynen)

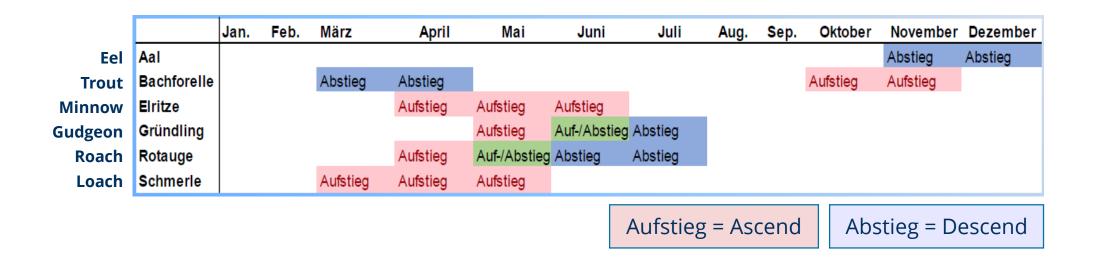


Life fish tests require detailed preliminary planning, careful application and controlling during experiments


- Special fish keeping facility
- **RFID Telemetry** / RFID antennas
- **Coordination of fish experiments** with other tests/duties in the hydraulic test lab,
 - o suspending construction work → avoiding noise and vibrations
 - refilling and cleaning the accumulator before the fish tests
 - constant control and regulation of water temperature (+ 0.5 K/hour)
 - o (chemical) water quality
- special fish **protection rakes** needed

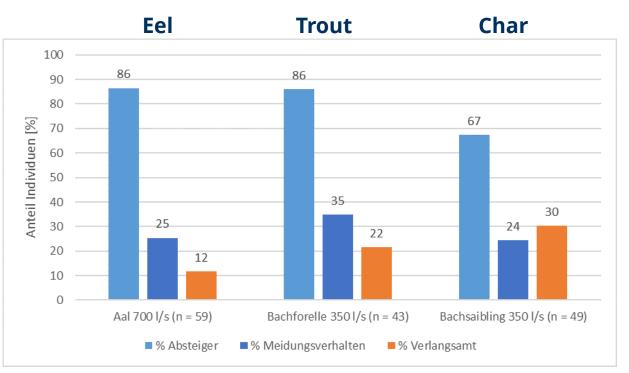
Life fish tests require detailed preliminary planning, careful application and controlling during experiments

- Special fish keeping facility
- **RFID Telemetry** / RFID antennas
- **Coordination of fish experiments** with other tests/duties in the hydraulic test lab,
 - o suspending construction work → avoiding noise and vibrations
 - refilling and cleaning the accumulator before the fish tests
 - constant control and regulation of water temperature (+ 0.5 K/hour)
 - o (chemical) water quality
- special fish **protection rakes** needed
- Cooperation with ichtyologists indispensable


Bundesministerium für Bildung und Forschung

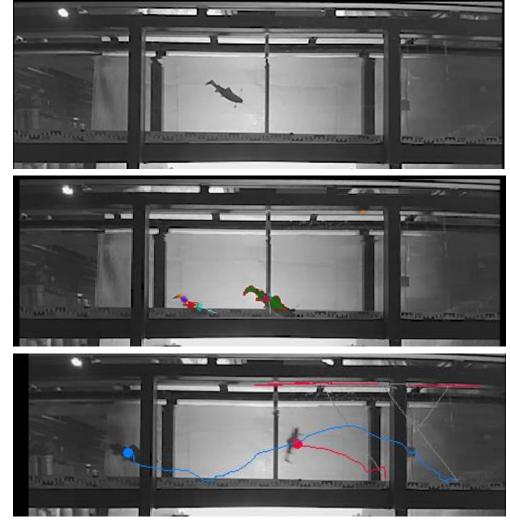
7

- Seasonal motivation of upstream or downstream migration depending on fish species
- Testing of 6 fish species representing the whole range of ecological guilds typical for trout and grayling region



+ extra tests: Char

- Seasonal motivation of upstream or downstream migration depending on fish species
- Testing of 6 fish species representing the whole range of ecological guilds typical for trout and grayling region
- High motivation for **downstream passage**
- **86 % of Eel and Trout** passed the turbine (extra tests with Char: 67 %)
- Tendency for avoiding passage observed for all species → reduction of migration speed
- very few cases (Trout, Roach) for upstream passage → problematic
- no immediate or retarded (48h) mortality (valid for all species) → rarely (minor) injuries through downstream passage



Conclusions and Outlook

- Fish can cope with velocities and turbulences in VPP (downstream passage)
- No or minor damage by downstream migration due to beneficial velocity distribution in VPP (relative tangential & radial velocities to rotating blades matter)
- Upstream migration not as successful
- Life fish tests are very challenging → numerous drawbacks for laboratory operation → Alternatives???
- Project: "RETERO" (<u>www.retero.org</u>) → Robo-Fish ("Reduction of live fish testing through science and technology")
- Start in 2020
- comparison of available fish tracking technologies (ETH Zurich, Noldus, ...) → Recommendations?

Bundesministerium für Bildung und Forschung

Thank you for your attention!

Technische Universitaet Dresden Institute of Hydraulic Engineering and Technical Hydromechanics (IWD) August-Bebel-Straße 30 01062 Dresden/Germany

- **2:** +49-(0)351-463 33874
- . +49-(0)351-463 37120
- Www.iwd.tu-dresden.de
- : torsten.heyer@tu-dresden.de

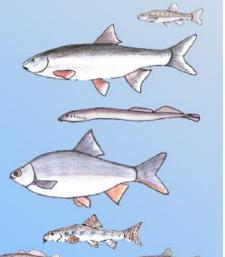
The project was funded by the German Federal Ministry of Education and Research (BMBF) and is part of the "River Stream Plus" development project.

HYDRO SUMMIT 2020 – Trondheim, Norway "Ethohydraulic Investigations in a VPP" – Torsten Heyer

Choice of fish type:

Spectrum of species in a typical grayling area:

eel (weak, big, sensitive) trout (strong, big, robsut)


minnow (strong, small, sens.)

gudgeon

roach

loach (weak, small, robust)

Art	Schwimmhorizont	Schwimmleistung	Körpergröße	Kategorie	Empfindlichkeit
Aal	sohlorientiert	schwach	groß	1	sensitiv
Äsche	Freiwasser	stark	groß	2	sensitiv
Bachforelle	Freiwasser	stark	groß	2	robust
Bachneunauge	sohlorientiert	schwach	klein	6	robust
Döbel	Freiwasser	stark	groß	2	robust
Dreistachliger Stichling	sohlorientiert	schwach	klein	6	robust
Elritze	Freiwasser	stark	klein	3	sensitiv
Flussneunauge	sohlorientiert	stark	groß	4	nicht relevant
Groppe	sohlorientiert	schwach	klein	6	robust
Gründling	sohlorientiert	stark	klein	4	sensitiv
Hasel	Freiwasser	stark	groß	2	sensitiv
Huchen	Freiwasser	stark	groß	2	robust
Lachs	Freiwasser	stark	groß	2	robust
Meerforelle	Freiwasser	stark	groß	2	robust
Plötze	Freiwasser	schwach	groß	5	sensitiv
Quappe	sohlorientiert	schwach	groß	1	robust
Schmerle	sohlorientiert	schwach	klein	6	robust
Schneider	Freiwasser	stark	klein	3	sensitiv
	L	γ]		цт
Releva	ant for asce	nt		d	escent



6 relevant species for typical grayling habitat

Brown Trout During a Test on 08.11.2018

Observing the Fish After Tests

und Forschu

HYDRO SUMMIT 2020 – Trondheim, Norway "Ethohydraulic Investigations in a VPP" – Torsten Heyer WACHSTUMSKERNE UNTERNEHMEN @ THEMPEriode States of the sta

Results

- Seasonal motivation of upstream or downstream migration depending on fish species
- Testing of 6 fish species representing the whole range of ecological guilds typical for trout and grayling region

Art	Durchfluss	Probanden	Aktive	Turbinenauslass	Aufsteiger
minnow	360	40	40	11	0
gudgeon	400	49	39	12	0
roach	420	60	57	18	2
loach	400	36	26	11	0
Gesamtergebnis		185	162	52	2
			K		

GEFÖRDERT VOM

für Bildung und Forschung

HYDRO SUMMIT 2020 – Trondheim, Norway "Ethohydraulic Investigations in a VPP" – Torsten Heyer WACHSTUMSKERNE UNTERNEHMEN REGION Fluss-Strom

Ethohydraulic Investigation Results

Upstream (ascent) tests in the Autumn

- A minimum of 25% and **max. 50% of trout passed through** the turbine and entered the vortex basin
- About 10 fish swam into the fish trap and then decended into the lower channel again using a slide.
- The fish were still healthy after the experiments and were returned to their original waterbodies.

Downstream (descent) tests:

• After passing through the turbine, **no serious injuries** were incurred by the fish

Bundesministerium für Bildung und Forschung

15

Conclusion and Next Steps

- 1:1 laboratory model successfully built and instrumented with needed sensors
- Laboratory requirements for conducting the fish requirements were met
- Measurements were extensively collected and evaluations were run
- Implementation of comparative 3D-CFD simulations (OpenFoam) to extend the meaningfulness of the laboratory measurments
- Fish decent was successful. Fish ascent was only successful for brown trout and partially successful for roach fish.
- Detailed examination of critical point for fish ascent, e.g. by evaulating the flow fluctuations (turbulence)
- Electricity production has to be increased by further optimization of the turbine and operating system.

