

Hydrocen Norwegian research centre for hydropower technology

DoE – HydroCen workshop

WEB 2020-06-23

Michael Belsnes .et al.

...leading to this workshop

- HydroBalance project and FME CEDREN
- FME HydroCen
 - HydroVision 2019
 - Saltlake workshop
 - MoU signing in Feb. 2020
- Today fill the collaboration with content
- HydroWires initiative in US & HydroCen and EnergiX in Norway

Agenda for the meeting

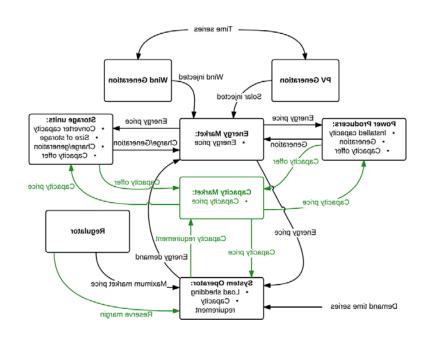
16:00	Welcome and introduction (Michael Belsnes, Birger Mo, Sam Bockenhauer)
16:15	Collaboration topic: Price formation in future energy markets (Michael Belsnes, Audun Botterud)
16:30	Discussion
16:45	Collaboration topic: Comparison and co-development of power system models and soft-linking models
	(Birger Mo, Hans Ivar Skjelbred, Greg Brinkman)
17:00	Discussion
17:15	Other possible collaboration topics: Market transformation lessons (Abhishek Somani), others?
17:30	Connections with Annex IX (Atle Harby, Audun Botterud, Nathalie Voisin, others)
17:45	Open discussion
18:00	Adjourn

HydroCen

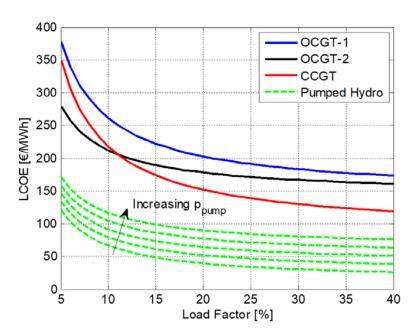
NORWEGIAN RESEARCH CENTRE FOR HYDROPOWER TECHNOLOGY

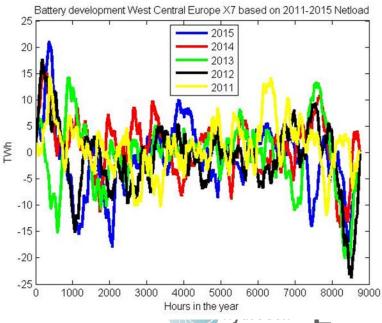
Price formation and compensation in future power markets

Magnus Korpås NTNU, Audun Botterud Argonne/MIT, Michael Belsnes SINTEF



Objective


- Establish method(s) for calculating consistent market prices in the future renewable power markets. Hydro is part of a mix but not dominant
- Norwegian perspective ensured in:
 - Pribas, priceforecasting in Norway
 - IBM with dual-market long-term operation
 - SHARM with multimarket short-term operation
- Understand and discuss how market design impact on compensation in the dimensions of services delivered to the grid and capabilities of the technologies.



Value

- Establish a open toolbox for analysing power/energy markets dominated by:
 - Wind, Solar, energy storage, empowerment (DMS), renewable combustion ++, H2, heat p2g, electrification
- Help the power industry to adapt to the energy system development in Europe
- Understand and discuss cost recovery in markets dominated by renewables – impact from design and regulation

Background EU perspective

- 1. Integration into a single European energy system
- 2. Legal, policy & regulatory framework and market design
- 3. Technology acceptance and energy citizenship
- 4. Macro-economic aspects and competitiveness
- 5. Fair and inclusive transition
- 6. Circularity
- ⁷7. Digitalization

The project will:

- Establish models for energy pricing, reserve pricing with different start-up times and durations times, modelling of flexible demand from the main demand sectors including the process industry.
- Build competence on how to modelling new power and storage technology and how these technologies will complement each other in the future power markets.
- Impact on markets from forecasting errors in (short-term) climate data.
- Do a validation of the toolbox through case studies of the future European markets with workshops with stakeholders in Europe, US and Norway to get feedback on the results.
- Compare different technologies according to their footprint based on circularity
- Consider different stages in the market development that follows from the energy transition.
- Produce three Ph.d's in the following topics:
 - Future Power markets,
 - Renewable Technologies
 - Transition modelling.

ELECTRICITY MARKET MODELS FOR THE FUTURE POWER GRID: A US-EUROPEAN REVIEW

Background

- Rapid transformation in the resource mix
 - Large-scale expansion of zero-marginal cost, variable, renewable resources
- Do current electricity markets provide adequate price signals and cost effective system solutions?
- Is hydropower and other flexible technologies fully compensated for the range of services they provide to the grid?
- Are existing electricity market models able to analyze these questions?

Proposed work

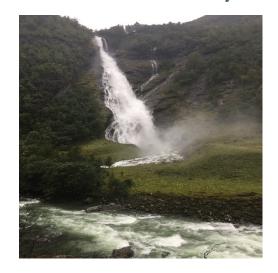
- Evaluate and compare existing models for electricity market analysis (US, Norway, Europe)
 - Categorize models (e.g. production cost simulation, expansion planning, hydro-thermal coordination)
 - Ability to represent emerging dynamics in electricity markets; challenges in establishing requird datasets
 - Ability to model prices for energy and other grid services
 - Can they be used to assess the viability of hydropower and other flexible technologies?
- Identify most important areas where improvements are needed
 - Support enhancements of existing models and development of new models

Timeline and deliverable

- Start soon, 6 months of work
- Journal manuscript ready for submission

HydroCen

NORWEGIAN RESEARCH CENTRE FOR HYDROPOWER TECHNOLOGY



ValueFlex – pre-project in HydroCen

Initiated on request from the industry organization EnergiNorge

Purpose of the project

Mapping possibility for future value potential

- Expected market design development in Europe
- Cost development for alternative production technologies, flexible demand, batteries and other storage technologies, transmission technology
- Hydropower in the transition period
- Hidden values can be both costs and values
 - Emissions CO2 reductions
 - Flood reduction, loss of lure floods
 - Recreational access, loss of attractions
 - Jobs and industry in the districts

www.hydrocen.no

Twitter: @FMEHydroCen LinkedIn: HydroCen

Flickr: HydroCen

Kontor:

Vannkraftlaboratoriet, NTNU

Alfred Getz vei 4

Gløshaugen, Trondheim

