Not-in-kind approach to remote monitoring in CO2 refrigeration systems

Outline

- The MultiPACK H2020 Project
- 1st MultiPACK demosite: integrated Supermarket in Italy
- Performance evaluation
- Considerations on performances benchmarking
- Refrigerant flow measurement

The MultiPACK Project

- EU funded Horizon 2020 Project (Grant number 723137)
- Duration: 48 months
- Partners: NTNU (coordinator), Sintef, Danfoss, Enex, CNR-ITC, Sonae, RACE partners are present in all the links of the value chain from initial innovation to the actual end user
- Main focus areas:
 - Supermarkets
 - High energy demanding buildings

(hotel, gyms, etc.)

What is a MultiPACK unit for Supermarkets?

- A **fully integrated** unit providing Refrigeration, Heating and Air Conditioning based on **Carbon Dioxide** as the refrigerant
- Heat Pump functionality
- Cooling and dehumidification
- Suitable for South European Climate, thanks to Parallel Compression, Overfed Evaporators, Ejectors for vapour pre-compression and liquid recirculation
- Scalable and adaptable to different load ratios and HVAC design
- Fully instrumented for **performances monitoring**

What are MultiPACK objectives for Supermarkets?

- Build up confidence for standardised integrated cooling & heating packages
- Demonstrate technical feasibility, reliability and serviceability
- Demonstrate energy performances in South European Climate

How?

• Installing 3 fully instrumented demo sites

Where?

• Portugal and Italy

The MultiPACK unit in central Italy

- Nominal capacity 50kW MT, 20 kW LT, 75 kW AC, 110 kW Heating
- Based on a **booster concept** with parallel compression
- Expansion work recovery via multiejector system
- Minimised superheat
- Integrated direct air heating, cooling and dehumidification with AHU
- Heat Pump functionality
- Fully instrumented for performances monitoring

Measurement instruments

- Power input to compressors racks (MT, LT, Aux, Total)
- Refrigerant mass flow MT, MT+LT
- Air flow, T and RH in and out from AHU
- Pressure and temperature for key points state definition
- Components status

First law approach

$$COP_{tot} = \frac{\dot{Q}_{MT} + \dot{Q}_{LT} + \dot{Q}_{AC} + \dot{Q}_{H}}{P_{MT} + P_{LT} + P_{Aux}}$$

$$COP_{MT} = \frac{\dot{Q}_{MT} + (\dot{Q}_{LT} + P_{LT} - \dot{Q}_{ds})}{P_{MT} + P_{Aux}}$$

n.a. if (
$$\dot{Q}_H > 0 \land P_{Aux} > 0$$

$$COP_{LT} = \frac{\dot{Q}_{LT}}{P_{LT}}$$

Easier evaluation in energy terms

Performance evaluation (winter)

22-23 December 2018 AHU on (heating) during the day

Second law approach

$$\eta_{tot} = \frac{P_{C,MT} + P_{C,LT} + P_{C,AC} + P_{C,H}}{P_{MT} + P_{LT} + P_{Aux}} =$$

$$\frac{\dot{Q}_{MT}\left(\frac{T_{amb}}{T_{MT,ref}}-1\right)+\dot{Q}_{LT}\left(\frac{T_{amb}}{T_{LT,ref}}-1\right)+\dot{Q}_{AC}\left(\frac{T_{amb}}{T_{AC,ref}}-1\right)+\dot{Q}_{H}\left(1-\frac{T_{amb}}{T_{H,ref}}\right)}{P_{MT}+P_{LT}+P_{Aux}}$$

Requires reference values for $T_{MT,ref}$, $T_{LT,ref}$, $T_{AC,ref}$, $T_{H,ref}$ Assumed as 273.15 K, 251.15 K, 299.15 K and 294.15 K

-	-	22/12/2018	22-23/12/2018	12/12/2018	12-13/12/2018
T _{amb}	(°C)	14.5	14.2	10.6	9.9
T _{evMT}	(°C)	-4.6	-5.0	-4.9	-5.1
T _{evLT}	(°C)	-31.3	-30.2	-30.4	-30.9
T _{evaux}	(°C)	2.6	-	-0.8	-
p _{gc}	(10 ⁵ Pa)	70.3	55.8	77.3	53.7
Q _{MT}	(kW)	35.0	24.2	31.4	22.4
Q _{LT}	(kW)	13.4	19.4	16.9	14.5
Q _H	(kW)	30.9	-	49.3	-
LR	(-)	2.6	1.2	1.9	1.5
COP _{MT}	(-)	2.7	5.3	3.2	6.3
COPLT	(-)	3.8	3.7	4.0	4.1
COP _{tot}	(-)	3.6	3.3	4.4	4.0
η_{tot}	(-)	0.20	0.29	0.23	0.27

 $LR = \frac{\dot{Q}_{MT}}{\dot{Q}_{LT}}$

Performance evaluation-preliminary summer data

21-22 July 2019 AHU on (cooling)

- Both 1st and 2nd law approach require loads measurements, i.e. refrigerant flow measurement (not affordable values by direct simple calculation in complex systems)
- Flow meters installation is not common practice in commercial refrigeration
- Objectives: low cost, reliable, good accuracy meter, to be extensively installed in supermarkets

In-house flow meter

Α

Flow

Based on hot wire anemometer principle

Expected performance

First prototype

Conclusions

- The MultiPACK H2020 Project
- 1st MultiPACK demosite: **integrated Supermarket** in Italy
- Challenge in **performance measuring**
- Challenge in performance benchmarking
- First or second law analysis
- **Refrigerant mass flow measurement** is anyhow required for performance evaluation

Thank you!

Silvia MINETTO silvia.minetto@itc.cnr.it

The MultiPACK Project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 723137