Established in 2011 at NTNU, Faculty of architecture and fine art. Department of Architectural Design, Form and Colour.
https://www.ntnu.edu/bff/lightandcolour
Core members of Light and Colour Group

Barbara Szybinska Matusiak (BM); Leader of the group. Professor at the Department of Architectural Design, Form and Colour Studies. Trained as an architect and has 6 years practice from arch. offices, PhD from NTH "Daylighting in Atrium Buildings" (1998) and 15 years of experience as teacher and scientist at the Faculty of architecture, NTNU.

Competence: Architectural Design, Daylight and Electrical light, Colour *Excellence:* Daylighting - all aspects

Alex Booker (AB); Professor at the Department of Architectural Design, Form and Colour Studies. Trained as a fine artist and has over 35 years of experience with colour as aesthetic and communication in the visual arts, public art in architecture, product design and visual communication.

Competence: Fine Art, Colour, Technical Design, Photography, Philosophy; *Excellence:* Fine Art

Arne Valberg (AV); Professor Emeritus, originally from the Department of Physics, NTNU.

Competence: Visual perception; *Excellence:* Colour vision/theory

Kine Angelo (KA); Assistant professor at the Department of Architectural Design, Form and Colour Studies. Interior Architect.

Competence: Interior Design and Colour Design; *Excellence:* Colour design

Claudia Moscoso (CM); Postdoctoral Fellow at the Department of Architectural Design, Form and Colour Studies. Architect.

Competence: Architectural Design; *Excellence:* Perception of daylight and architectural quality

Veronika Zaikina (VZ); Researcher at the Department of Architectural Design, Form and Colour Studies. Architect.

Competence: Architectural Design; *Excellence:* Daylighting

Shabnam Arbab (SA); PhD candidate at the Department of Architectural Design, Form and Colour Studies. Architect.

Competence: Architectural Design; *Excellence:* Colour/theory

Michael Gruner, researcher, Department of Architectural Design, Form and Colour Studies (40%) and SINTEF (60%)

Competence: Sustainable Architectural Design; *Excellence:* Daylighting

Karin Fridell Anter. PhD, Docent in Architecture with special focus at colour. Leader of the SYN-TEF research group previously at University College of Arts, Crafts and Design (Konstfack) Stockholm.

Competence: Colour and light in architecture; *Excellence:* Colour/theory

Anna Sochocka (AS); PhD candidate at the Department of Architectural Design, Form and Colour Studies in cooperation with WUT. Architect.

Competence: Architectural Design; *Excellence:* Daylighting.
DayLighting, NRF project

1. Comparison of lighting calculations with scale-model measurements

<table>
<thead>
<tr>
<th>Alt A(1) Black</th>
<th>Alt A(1) White</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. Development of new versions of skylight design

![Old](image3) ![New](image4)

The monitoring procedure for retrofitting of lighting systems is one of the tasks; a new procedure for estimation of the directivity of light has been developed by the Norwegian group. It is based on the usage of a white ball; the luminance mapping on its surface enables estimation of directivity.

Luminances (cd/m²)

Daylight with distinguish directivity, the white ball and an example of luminance mapping.

From left to right: Daylight with distinguish directivity, the white ball and an example of luminance mapping.
Idélab → HOME, holistic monitoring of indoor environment

This project was developed in the Idélab organized by RCN for the first time in Norway, January 2014; its topic was: “Toward zero emission society!” The main objective of the Idélab was to cultivate radically new ideas and solutions to existing and future societal challenges. 25 handpicked participants from different disciplines met in an intensive working session; the projects have been developed in discussion with appointed mentors. The HOME project is one of the 4 winning projects. It is established at the Faculty of Architecture and Fine Art, NTNU in cooperation with IFE, Treteknisk and IET/NTNU. It started in November 2014 and will last for three years; the total budget is NOK 10 mill. Our main research question is: How can the energy use (and thereby the emissions) for maintaining full comfort in interiors be radically reduced by introducing rapidly responsive materials (wood?) and technologies, (smart window?) and by using a holistic control system?
Thermo-modernization of two chosen public buildings according to nZEB standards

NTNU and WUT

Aim of the project to develop a methodology of modernisation of public buildings to the standard of nZEB. The expertise of worldwide known Research Centre ZEB in Trondheim give an exceptional opportunity to transfer both Norwegian know-how and technologies to Poland. Such a transfer will need to be tailored to Polish conditions with a support of scientific approach. The applicability of the developed universal methodology will be checked on two case studies.

Partners

- NTNU – Trondheim
 Norwegian University of Science and Technology
- LIGHT & COLOUR GROUP
- POLITECHNIKA WARSZAWSKA
- SINTEF
Relief, interaction between colour and light

This project focuses at the perception of lightness and colours of surfaces in different lighting conditions. Subjective observations are compared to the exact measurements with the PR-655 SpectraScan.
An overcast sky simulator, artificial sky, was developed in the fall of 2000 at the Faculty of Architecture and Fine Art, NTNU. The ceiling was made of evenly distributed fluorescent light tubes and a “perfectly” diffusing canvas stretched beneath. The development in LED-technology gives new possibilities for control of correlated colour temperature (CCT). The present development of the artificial sky consists of the construction of a new ceiling. It have been done by Spectro Color using different types of LED-chips; additionally, a sophisticated solution for diffusion of light from LEDs was developed. The new ceiling enables adjustment of the CCT from 2000K to 18000K in three illuminance levels: 100%, 50% and 25% of the maximum power. Additionally, a special demonstration program will make it possible to choose each of the following alternatives: R, G, B, W-2700K, W-3400K, W-5500, W-6500 and W-8000 separately, in each of the half-parts of the ceiling.
VIEW: how we evaluate the view out of the window?

NTNU project with the following results:
- view distance,
- the number of view layers,
- the quality of the landscape/elements
- the composition of the view.

<table>
<thead>
<tr>
<th>VIEW descriptors proposed for CEN:</th>
<th>INSUFFICIENT</th>
<th>SUFFICIENT</th>
<th>GOOD</th>
<th>EXCELLENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Width of view window(s)</td>
<td>< 13°</td>
<td>> 13°</td>
<td>> 27°</td>
<td>> 54°</td>
</tr>
<tr>
<td>Distance of the view</td>
<td>< 6 m</td>
<td>> 6 m</td>
<td>> 20 m</td>
<td>> 50 m</td>
</tr>
<tr>
<td>Number of layers:</td>
<td>only sky or only ground</td>
<td>landscape layer is included</td>
<td>minimum to layers are included</td>
<td>all layers are included</td>
</tr>
<tr>
<td>- sky</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- landscape (both urban and nature)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- ground</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Environmental information:</td>
<td>time and weather</td>
<td>time weather and location</td>
<td>time, weather, location and one of: nature and people</td>
<td>all</td>
</tr>
<tr>
<td>- location (orientation regarding water, food, heat, sunlight, escape routes, destination)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- time (environmental conditions which relate to our innate biological clocks)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- weather (need for clothing, need for shelter, heating/cooling, opportunities for sunbath)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- nature (the presence of trees, bushes plants, insects, birds and other animals)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- people (the presence of people and their activities)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Good lighting quality:

- Provide appropriate viewing conditions to support visual and task performance (photometric studies)
- Contribute to the aesthetic perception of the space (subjective evaluations) < Not enough research about the relation between daylight and aesthetic qualities.

RQ: How does daylighting design affect the aesthetic impression of a built environment?

RQ: Can stereoscopic imaging be considered an accurate exp. method in comparison to real environments in daylighting studies?

Exp. Research

1. Validation of stereoscopic method for daylighting studies
2. Primary daylighting design: Windows
3. Advanced daylighting design: Daylighting systems

Main Findings

- Stereoscopic imaging is a valid and accurate method to study aesthetic perception of daylit environments.
- For certain attributes, window size is a more important parameter than the room reflectance.
- Physical parameters of daylighting systems influenced more the aesthetic judgements than photometric measurements.
How does colour affect the perception of light level in an architectural space?

What are possible and reliable luminance-based metrics of light modelling for achromatic and chromatic 3D objects in day-lit room?

How effective are the suggested luminance-based metrics compared to the existing illumination-based metrics of light modelling?

The luminance-based metrics of contour distinctness:
1. Contrast metric (Weber formula).
2. Luminance ratio between average luminance of the object and average luminance of the background.
3. Mean point luminance ratio.
4. Percentage of the invisible part of the contour.

The luminance-based metrics of shape and detail distinctness:
1. Luminance ratio.
2. Mean luminance of the object.
3. Standard dev. of the luminances of the foreground.
4. Ratio between the max. and the mean luminance of the mask.
Colours in the architectural context, Advanced glazing
Ongoing PhD project – Shabnam Arbab

For most people, the correct perception of colours of objects and room surfaces is an important part of the quality of life.

Motivation: need of knowledge about spatial (as opposite to flat) visual perception in colour research and the perception of colour illuminated by light with different spectral.

RQ 1: How is the perception of colour influenced by the colour temperature (CT) of light?

Main findings:
Increasing CT of light cause shifts from yellowish to bluish

RQ 2: How is the perception of colour influenced by glazing types in combination with light of various colour temperatures (CT)?

Main findings:
Glazing with different transmittance and colours had significant impact on the visual evaluation, especially EC-coloured tend to give severe colour distortions especially for colour samples with yellow and red hues.

RQ 3: How much and in which direction the interior colours change their visual appearance due to a given type of glazings?
Identifying the impact of regional differences on the perceived quality of daylit architectural spaces
A comparison study across different latitudes
Postdoctoral Project – Funded by VELUX Stiftelse, in cooperation with LIPID Lab, EPFL
COLOUR REGISTRATION OF TRONDHEIM 2014/2015

Gårds- og bruksnr. 400/139
Kjøpmannsgata 5
fasade mot vest

FASADEMATERIALE
Stående panel med under- og overliggere, god stand. Endene på panel som er nærmest bakken er noe preg av slagregn og har slitte ender. Derene har et synlig fiskebeinsmønster i tre med ca. 2 cm relief, mens portene etterligner dette mønsteret, men har et lavere relieff. 3 typer vinduer, felles for dem er de småutrede sprossesvinduer, med 6 små ruter i hvert. 2-rams vindu med stående rektangulære ruter, to horisontale og en vertikal sprosse, et slakt i 1. etg. 3-rams vindu som ellers er lik førstnevnte, disse er i 1. - 4. etg. I 5. etg er det 3-rams vinduer som er like sistnevnte, med unntak av at disse har kvadratiske ruter. Loftsvinduene er like siste- nevnte, men er kun 2-rams. Taket ser nytt ut og består av glaserte, svarte takstein.

FASADEFARGER
Kledning: NCS S 4030-Y30R
Gerikter: NCS S 3005-B20G
Vinduer: NCS S 0903-G80Y
Dører: NCS S 5502-Y
Porter (byggene): NCS S 6005-G80Y

NOTATER
Trondheims’ traditional colour palette: the chromatic hues are dominated by colours between yellow and red, with a few green colours and achromatic greys. The nuances are mainly the “typically untypical colours – with a characteristic being more or less equally white, black and chromatic.

Modern architecture does not support the traditional colour identity of the city, and is dominated by achromatic hues, often with accents in strongly chromatic colours of all hues. The older chromatic houses are being repainted in colours with a dominant characteristic of whiteness or in the achromatic greyscale.
A GUIDE TO LIGHT AND COLOUR DEMONSTRATIONS

A new book authored by Arne Valberg

and edited by:

Bjørg Helene Andersen
Kine Angelo
Barbara Matusiak
and Claudia Moscoso

Printed in October 2015.
RESEARCHERS NIGHT 2016

Stand 22: Perception of light and colour

1100 pupils from 30 schools

Kine Angelo
Andreas Weibye
RESEARCH & DISSEMINATION in organizations:

- **CIE**, International Commission on illumination, tech. committees: TC 3-45, TC 3-53 and TC 3-54
- **NLK**, Norsk Lysteknisk Komitee, the research group in Lyskultur
- **AIC**, the International Colour Association
- **Forum Farge**, the interdisciplinary Colour-Network in Norway
- **SYN-TES**: Human Colour and Light Synthesis, the research network in Scandinavia
- **IEA**, International Energy Agency
- **CEN**, TC 169/WG 11 Daylight in buildings
MA AND DIPLOMA STUDENTS PROJECTS

Light Project in cooperation with Trondheim Municipality. 2015

Diploma by Marte Valderaune. 2016

Architectural Design with Light and Colour

Diploma by Bjørg Helene Andorsen. 2016
EXHIBITIONS

Colour in the City. Trondhjems Kunstforening and Sumhuset. 2014
Exhibition and conference organised and curated by the light and colour group

LIGHT & COLOUR GROUP

NTNU – Trondheim
Norwegian University of Science and Technology
Colour in the City. Trondhjems Kunstforening and Sumhuset. 2014
Nå skal byen vår bli mer fargerik igjen

Trondheim skal få mer farge. NTNU og kommunen jobber med en ny fargevelfinder som møter til des hvite og grå trenden.

Norge i koks, kalk og grått

Tøkk deg til å være lystfriken. Samtidig som Norge blir gråere opptil.

Depression and grey houses linked

"Grahouses increase risk of depression," new study suggests.
Will you join us?

Contact: Barbara Matusiak
barbara.matusiak@ntnu.no