NG

Anchorage of tower foundations in rock Classification of rock ground and design rules

Jessica Ka Yi Chiu, jessica.ka.yi.chiu@ngi.no ROCARC-webinar 2020-11-18

Agenda

chimney

tendoń

- 1. Background
- 2. Classification of rock ground
- 3. Design rules

NGI Statnett

Anchorage of power line tower foundation on rock; Classification of rock and design rules

Tore Valstad^[1], Einar John Lande^[1,2] and Elin Katrine Morgan^[1] ^[1] Norwegian Geotechnical Institute (NGI), NO-0806 Oslo, Norway ^[2] Department of Civil and Transport Engineering – Norwegian University of Science and Technology, NO-7491 Trondheim, Norway John-Petter Sivertsen^[3] ^[3] Statnett SF, NO-0484 Oslo, Norway

2016 -

Foundation of tower chimneys on rock

Teknisk standa	rd	Statnet	
Fundamentering berggrunnen	ı av mastestabb	er på berg; Klassifisering av	
Dokument ID: Konfidensialitet: Denne kopien ble last Originaldokumentet kk Gjeldende revisjon av http://samhanding.stz Arbeidsgruppe: Ansvarlig: Dokumenteier:	Teknisk stand Fundamenterin Dimensjonerin	dard ng av mastestabber på berg; gsregler	Statnett
Verifisert: Godkjent: Planlagt revidert inn Nøkkelord:	Dokument ID:	SDOK-82-3, revisjon: 5.0 K1 Exr Statesta interne bruk eller etter autele med States	
-	Denne kopien ble lastet m Originaldokumentet kan h Gjeldende revisjon av dett	ed 06.02.2018 av John-Petter Sivertsen. a blitt publisert i ny revisjon eller trukket tilbake etter at den te dokumentet kan lastes ned her:	ne kopien ble lastet ned.
	http://samhanding.statnet Arbeidsgruppe: Ansvarlig: Dokumenteler: Verifisert: Codkient:	t.no/styrendedok/Dok.aspx?id=SDOK-82-3 Seksjon for Mekanisk prosjektering (UTLM) Leif Halvor Moen Greta Bjombeth 14.11.2016 av Leif Halvor Moen 14.11.2016 av Creta Bjombeth	
	Planlagt revidert innen: Nøkkelord:	14.11.2019 Master og fundamenter	

NC

- After a power line foundation failure in Sauda – Liastøl, NGI was employed by Statnett to develop a better procedure for rock ground investigation and designing of anchorage of power line tower foundation on rock.
- This resulted in two contract documents: «Classification of rock ground», which presents a procedure for classification of rock ground.
- «Design rules», which presents a procedure for determining bearing capacity of rock ground and required embedment depth of tendons in the tower chimneys based on rock class.

Load scenarios and loads on tower foundations

- 7 Stretching of line
- Wind (50-year return period) 1
- Icing (150-year return period) ٦
- Vertical compressional and tensile loads ٦
- Horizontal forces ٦
- ٦ (Moments)

What is the purpose of these specification?

- To establish a safe practise for design of the tower foundations on rock ground, with focus on:
- A. Bearing capacity on rock ground
- B. Pull-out resistance of the rock ground

General information about the specifications

NEK EN 50341-1, -2, -3-16:2001 For Norge

Utgave 1.N 2008

Norsk elektroteknisk norm

Luttiedninger som overstiger AC 45 kV Del 1: Generelle krav Føllesspesifikasjoner Del 2: Oversikt over nasjonale normative aspekter Del 3-16: Fastsatte nasjonale normative aspekter

Norwegian electrotechnical standard

Overhead electrical lines exceeding AC 45 kV Part 1: General requirements Common specifications Part 2: Index of National Normative Aspects Part 3-16: Set of National Normative Aspects

NG

- NEK NOTEK ELEKTROTEONEK KOMTE Rona najoseloniak tr
 - KTROTEONISK HOMITE alkonder br Destynskriviska Convelsaion, IEC bein de Normalisation Electrosechrispus, CENELEC gebandett Electrose publicagion gebandett Electrose publicagion

- General rules for design of overhead electric lines are given in NEK-EN 50341-1, and -3-16:2001 «Overhead electric lines exceeding AC 45 kV», however, this does not cover tower foundations in rock.
- Therefore the rules are based on Eurocode 7, NS-EN 1997-1:2004+A1:2013+NA:2016
- The main focus is on anchorage of the chimney foundations against pull-out forces, which is usually controlling the design.
- To be applied by consultants and contractors responsible for design and construction of power lines for Statnett.
- Based on a classification of the rock ground at the site.

NG

Classification of rock ground

Table 1 Classification of rock ground

NG

Rock class	Designation	Description						
0	Massive rock	Intact rock or massive rock with a few widely spaced joints. The joint surfaces are unweathered and rough						
1	Slightly jointed rock	Rock mass intersected by one or two sets of joints. The joints are well interlocked and unweathered. Joint surfaces are rough to planar.						
2	Blocky rock	Rock mass intersected by two or three, sets of joint ocky rock forming cubical blocks. Joints are well interlocked and unweathered. Joint surfaces are rough to planar.						
3	Very blocky rock	Rock mass intersected by four or more joint sets. Joints y blocky rock are slightly interlocked or slightly weathered. Joints are planar or slightly filled with gauge material.						
4	Disturbed or disintegrated rock	Rock mass with several joint sets. Joints are poorly interlocked, persistent or schistose. Joints may be planar or filled with gauge material.						
Remark	The term "joint" is used here bedding, etc.							

Table 1 Classification of rock ground

Rock clas	s Designation	Description	
0	Massive rock	<u>Class 0 & Class 1</u>	
1	Slightly jointed rock	Sufficient tensile strength to withstand uplifting forces.	
2	Blocky rock	<u>Class 2 & Class 3</u> So low tensile strength that the uplifting forces can only be countered by shear	
3	Very blocky rock	resistance of joints and the weight of the rock lump between the embedded tendons.	
4	Disturbed or disintegrated rock	<u>Class 4</u> A concrete foundation in a blasted or excavated pit is cheaper than to reinforce the rock mass with tendons.	

Classification criteria

NG

			ROCK CLASS				
Property	0	1	2	3	4		
Fioperty	Massive	Slightly jointed	Blocky	Very blocky	Disturbed or disintegrated		
Weathering	Grade 0 - 1 Fresh or slightly	Grade 0 - 1 Fresh or slightly	Grade 0 - 1 Fresh or slightly	Grade 0 - 1 Fresh or slightly	Grade 2, 3, 4 Moderate or higher		
Unconfined compressive strength	Grade 0 - 2 q _u >100 MPa	Grade 0 - 3 q _u >50 MPa	Grade 0 - 4 q _u >25 MPa	Grade 0 - 4 q _u >25 MPa	Grade 0 - 6 q _u <25 MPa		
Number of joint sets	\leq 1 + random	≤2	≤3	\leq 3 + random	≥4		
Joint spacing	Very wide ≥ 2000 mm	Wide or greater ≥ 600 mm	Medium or greater ≥ 200 mm	Close or greater ≥ 60 mm	Very close or less < 60 mm		
Joint roughness	Rough, stepped or undulating	Rough, stepped or undulating	Rough, stepped, undulating or planar	Rough, smooth, stepped, undulating or, planar	Any roughness		
Joint aperture	Tight or less ≤ 0.25 mm	Partly open or less ≤ 0.5 mm	Open or less ≤ 2.5 mm	Moderately wide or less ≤ 10 mm	Very wide or greater ≥ 10 mm		
Joint filling	None	None	Granular material	Granular material	Clayey material		

10

Example from Inner Oslofjord – reporting

Results of classification (for each tower leg)

			ROCK CLASS	-	-		
Decementer	0	1	2	3	4		
Property	Massive	Slight jointed	Blocky	Very blocky	Disturbed or disintegrated		
Weathering	Grade 0 - 1 Fresh or slightly	Grade 0 - 1 Fresh or slightly	Grade 0 - 1 Fresh or slightly	Grade 0 - 1 Fresh or slightly	Grade 2, 3, 4 Moderate or higher		
Unconfined compressive strength	Grade 0 - 2 q _u >100 MPa	Grade 0 - 3 q _u >50 MPa	Grade 0 - 4 q _u >25 MPa	Grade 0 - 4 q _u >25 MPa	Grade 0 - 6 q _u <25 MPa		
Number of joint sets	$\leq 1 + random$	≤ 2	≤ 3	\leq 3 + random	≥4		
Joint spacing	Very wide ≥ 2000 mm	Wide or greater ≥ 600 mm	Medium or greater ≥ 200 mm	Close or greater ≥ 60 mm	Very close or less < 60 mm		
Joint roughness	Rough, stepped or undulating	Rough, stepped or undulating	Rough, stepped, undulating or planar	Rough, smooth, stepped, undulating or, planar	Any roughnss		
Joint aperture	Tight or less $\leq 0.25 \text{ mm}$ Partly open or less ≤ 0.5		Open or less $\leq 2.5 \text{ mm}$	Moderat wide or less ≤ 10 mm	Very wide or greater > 10 mm		
Joint filling	None	None	Granular material	Granular material	clayey material		

Design investigations (1)

- The design of anchorage of the tower foundations is performed either by the owner, as a part of the detailed design, or by the contractor as part of the construction contract.
- The mapping at the site shall be performed, documented and approved in due time ahead of the construction works.
- Where the rock is covered by soil, the bedrock within a minimum of 0.4 m from the chimney base shall be uncovered prior to mapping. All classification shall be carried out after moss, turf and thin soil layers have been removed.
- The classification for each tower leg shall be independent.

NG

Design investigations (2)

- **•** For Class 2 & Class 3:
- Fractured and weathered surface rock may be removed, then undertake new classification.
- Hydraulic hammer are well suited in removal of surface rock.
- Blasting of surface rock will seldom be appropriate. The base charge often tears up the rock and create new joints.

NG

Design rules

Chimney foundation design - general requirements

- Design of chimney foundations comprise two main tasks:
- Check that bearing capacity of the rock ground are adequate against design compressional loads from the chimney.

NG

Possible modes of failure at ultimate bearing capacity of foundation rock (Goodman 1989)

Chimney foundation design - general requirements

- Design of chimney foundations comprise two main tasks:
- Check that the anchorage in rock has adequate resistance (capacity) against design tensile forces from chimney.

Principal modes of failure of grouted rock anchors under applied axial tension (Pease & Kulhawy, 1984)

Strength parameters of rock mass

Table 1 Characteristic and design strength po	aramete	rs of roc	k mass						
Fasthetsparameter	Bergklasse / Rock Class								
Strength Parameter	0	1	2	3					
Enaksial trykkfasthet i intakt berg, q _{u,k}									
Unconfined compressive strength of intact rock, qu,	100	50	25	25					
Strekkfasthet av bergmassen, T _{0,k}									
Tensile strength of the rock mass, T _{0,k}	4.0	0.81	0.17	0.06					
Bæreevne av berggrunnen, q _{ad}									
Bearing capacity of rock mass, qad	71.4	16.4	5.0	3.1					
Dimensjonerende strekkfasthet av bergmassen, Tod									
Design tensile strength of rock mass, Tod		2.0	0.40	0.085	0.03				
Dimensjonerende heftfasthet i berggrunnen og i									
forankring berg / mørtel, f _{brd}									
Design bond strength in rock mass and in anchorage	e								
rock/mortar, f _{brd}	MPa	1.97	1.4	1.0	0.7				
Dimensjonerende heftfasthet mørtel/stag; B35, f _{bcd} [1]								
Design bond strength mortar/tendon; B35, fbcd	MPa	1.97	1.97	1.97	1.97				
^[1] Bestemt iht. NS-EN 1992-1 for terningfasthet, $f_{cck} = 45$ MPa /									
According to NS-EN 1992-1 for cube strength, $f_{cck} = 45 \text{ M}$									

Tabell 1 Karakteristiske og dimensjonerende fasthetsparametere for berggrunnen

How to determine bearing capacity of the rock ground?

- Characteristic values for bearing capacity of rock class (0-3)
- Bearing capacity based on the UCCS of intact rock, joint spacing, joint aperture.
- Characteristic strength values of rock ground estimated based on classification criteria, using the Hoek & Brown failure criterion.
- Boundary limits between the rock classes and engineering judgements

Bearing capacity of foundation rock

Presumptions:

- I. Only effective area of the chimney can transfer compressive force to bedrock (= inner diameter of hoop reinforcement)
- II. Design commpression capacity of tendons, fyd = 400 Mpa.
- III. Design compressive strength of concrete, fcd = 19,8 Mpa
- IV. Concrete cover = 50 mm.
- V. Diameter hoop reinforcement 10 mm.

Bearing capacity of foundation rock

- For rock class 0 and 1, the bearing capacity is limited by the reinforced chimney, i.e steel and concrete.
- For rock class 2 and 3 the bearing capacity is limited by capacity of rock mass and steel tendons.

Stabbe / Chinney Dim. bæreevne / Lengdearmering / reinforcement Design bearing capacity													
		Lengdeau	mering / reinf	I	esign bea	ring capac	ity						
	Diamatar	O stag /	Antall stag /	Kapasitet/	Eff. areal		Bergklass	e /rock cla	\$\$				
Туре	Diameter	bar har	number of	capacity,	betong/ Net								
			tendons	R _{id} ^[1]	area concrete	0	1	2	1				
	mm	mm	-	kN	mm ²	kN	kN	kN	k				
			6	1178		4 761	4 761	1 794	13				
-			8	1571		5 154	5 1 5 4	2 186	17				
1	600	25	10	1964	180 956	5 547	5 547	2 579	21				
			12	2357		5 940	5 940	2972	2.5				
			14	2750		0 333	0 3 3 3	3 305	29				
			0	2573		6 156	6 156	2 345	21				
т	600	32	10	3216	180.056	6 700	6 700	2 8 2 1	34				
	000	32	10	3850	100 950	7 442	7 442	4 474	4.0				
			14	4502		8 085	8 085	5 1 1 8	4 7				
			6	1178		7 351	7 351	2 238	1.5				
			š	1571		7 743	7 743	2 631	19				
			10	1964		8 136	8 136	3 024	2.3				
п	750	25	12	2357	311 725	8 529	8 529	3 417	2 7				
			14	2750		8 922	8 9 2 2	3 809	3 0				
			16	3142		9 315	9 3 1 5	4 202	34				
			18	3535		9 707	9 707	4 595	38				
			6	1930		8 102	8 102	2 989	2 2				
			8	2573		8 745	8 745	3 633	2.9				
		32	10	3216		9 388	9 388	4 276	3 5				
п	750		12	3859	311 725	10 031	10.031	4 9 1 9	42				
			14	4502		10.675	10.675	5 562	4.8				
			16	5146		11 210	11 210	6 205					
			10	5140		11 510	11 510	0 205	24				
			18	5789	608 212	12 221	12 221	0 849	10				
			8	1571	008 212	13 614	13 614	3 630	22				
			10	1964		14 007	14 007	4 032	26				
			12	2357		14 399	14 399	4 4 2 5	3.0				
			14	2750		14 792	14 792	4 818	34				
ш	1000	25	16	3142		15 185	15 185	5 210	3.8				
	1000	23	18	3535		15 578	15 578	5 603	4.2				
			20	3928		15 971	15 971	5 996	4 5				
			22	4321		16 363	16 363	6 389	49				
			24	4714		16 756	16 756	6 782	53				
			20	5100		17 149	17 149	7 1 /4	57				
			<u>20</u>	1030	608 212	13 072	13 072	3 008	2.5				
			8	2573	000 212	14 615	14 615	4 641	3 2				
			10	3216		15 259	15 259	5 284	3.8				
			12	3859		15 902	15 902	5 9 2 7	4.5				
			14	4502		16 545	16 545	6 570	51				
ш	1000	32	16	5146		17 188	17 188	7 214	58				
ш	1000	34	18	5789		17 831	17 831	7 857	64				
			20	6432		18 475	18 475	8 500	71				
			22	7075		19 118	19 118	9 143	77				
			24	7718		19 761	19 761	9 786	83				
			26	8362		20 404	20 404	10 430	90				
			20	9005		21047	2104/	11073	90				

Dimensionerende hareeve av herogruppen: stable type I II og III

Tabell 2

Computational models for pull-out resistance in rock

1. Tensile strength model (rock class 0-1)

2. Pull-out cylinder shaft (rock class 1-2)

3. Weight of cone (rock class 2-3)

4. Combined weight of cone and bond strength (rock class 2-3) ²⁰

Required embedment depth of tendons

CHIMNEY														FOR	ANKRIN	GSDYBD	EIBERG	/ EMBED	MENT DE	PTH OF	TENDON	S IN BEDR	OCK				
_	Outer		Reinf	orcement	t		Bond resistance				Ten	sile Strei	ngth Crite	erion	St	naft Frictio	on Criteri	on	Gravity	& Bond C	Criterion	Gravity criterion		Summary			
Type	diameter	Cover	Ø-bar	(A-boon	Number	Ru	Read		R	brd			Rock	Class			Rock	Class			Rock class	s			Rock	Class	
		COVEI	e-bai	80-1100p	of bars	1 10	1 1000	0	1	2	3	0	1	2	3	0	1	2	3	1	2	3		0	1	2	3
	mm	mm	mm	mm	6	kN	mm 1.270	mm	mm 1 200	mm	mm	mm		 	mm 4 220	mm	mm	mm	mm	mm 1250	mm		mm		mm 1.250	1 700	
					8	1 571	1 270	910	1 280	1 790	2 550	610	1 370	2 970	4 330	610	870	1230	1230	1450	1 600	1 750	4 500	1 270	1 450	1 790	2 550
	600	50	25	10	10	1 964	1 270	910	1 280	1 790	2 550	680	1 530	3 320	5 590	770	1090	1540	1540	1550	1 700	1 900	5 200	1 270	1 550	1 790	2 550
· ·			20		12	2 357	1 270	910	1 280	1 790	2 550	750	1 680	3 640	6 120	920	1300	1840	1840	1650	1 800	2 000	5 500	1 270	1 680	1 840	2 550
					14	2 750	1 270	910	1 280	1 7 9 0	2 550	810	1 810	3 930	6 620	1 080	1520	2150	2150	1750	1 900	2 100	5 750	1 270	1 810	2 150	2 550
					6	1 930	1 620	1 300	1 830	2 560	3 660	680	1 520	3 290	5 540	750	1070	1510	1510	1700	1 900	2 100	5 350	1 620	1 830	2 560	3 660
					8	2 573	1 620	1 300	1 830	2 560	3 660	780	1 750	3 800	6 400	1 010	1420	2010	2010	1850	2 000	2 250	5 850	1 620	1 850	2 560	3 660
	600	50	32	10	10	3 216	1 620	1 300	1 830	2 560	3 660	880	1 960	4 250	7 150	1 260	1780	2520	2520	1950	2 150	2 400	6 250	1 620	1 960	2 560	3 660
					12	3 859	1 620	1 300	1 8 3 0	2 500	3 000	900	2 150	4 000	7 840	1 510	2140	3020	3020	2050	2 300	2 550	6 000	1 620	2 150	3 020	3 000
					6	4 302	1 270	910	1 280	1 700	2 550	530	1 1 1 9 0	2 570	4 330	350	2490	700	700	1350	2 400	1 600	4 400	1 270	2 490	1 790	2 550
					ă	1.571	1 270	910	1 280	1 790	2 550	610	1 370	2 970	5 000	470	660	940	940	1450	1 600	1 750	4 800	1 270	1 4 5 0	1 790	2 550
					10	1 964	1 270	910	1 280	1 790	2 550	680	1 530	3 320	5 590	590	830	1 170	1 170	1550	1 700	1 900	5 100	1 270	1 550	1 790	2 550
Ш	750	50	25	10	12	2 357	1 270	910	1 280	1 7 9 0	2 550	750	1 680	3 640	6 120	700	990	1 4 1 0	1 4 1 0	1650	1 800	2 000	5 450	1 270	1 680	1 800	2 550
					14	2 750	1 270	910	1 280	1 790	2 550	810	1 810	3 930	6 620	820	1 160	1 640	1 640	1750	1 900	2 100	5 700	1 270	1 810	1 900	2 550
					16	3 142	1 270	910	1 280	1 790	2 550	870	1 940	4 200	7 070	940	1 320	1 870	1 870	1850	2 000	2 200	5 950	1 270	1 940	2 000	2 550
					18	3 535	1 270	910	1 280	1790	2 550	920	2 050	4 460	7 500	1 050	1 490	2 110	2 110	1900	2 100	2 300	6 150	1 270	2 050	2 110	2 550
					8	1 930	1 620	1 300	1 8 3 0	2 500	3 000	700	1 520	3 290	5 540	580	810	1 1 5 0	1 1 1 5 0	1/00	1 900	2 100	5 300	1 620	1 830	2 500	3 000
					10	3 216	1 620	1 300	1 830	2 560	3 660	880	1 960	4 250	7 150	960	1 360	1 920	1 920	1050	2 150	2 2 3 0	6 150	1 620	1 960	2 560	3 660
	750	50	32	10	12	3 859	1 620	1 300	1 830	2 560	3 660	960	2 150	4 660	7 840	1 150	1 630	2 300	2 300	2050	2 300	2 550	6 500	1 620	2 150	2 560	3 660
			~~		14	4 502	1 620	1 300	1 830	2 560	3 660	1 040	2 320	5 030	8 470	1 340	1 900	2 680	2 680	2150	2 400	2 700	6 800	1 620	2 320	2 680	3 660
					16	5 146	1 620	1 300	1 830	2 560	3 660	1 110	2 480	5 380	9 050	1 530	2 170	3 070	3 070	2250	2 500	2 850	7 100	1 620	2 480	3 070	3 660
					18	5 789	1 620	1 300	1 830	2 560	3 660	1 180	2 6 3 0	5 700	9 600	1 7 3 0	2 440	3 450	3 450	2350	2 600	3 000	7 350	1 620	2 6 3 0	3 450	3 660
					6	1 178	1 270	910	1 280	1 790	2 550	530	1 190	2 570	4 330	250	360	500	500	1350	1 450	1 600	4 250	1 270	1 350	1 790	2 550
					8	15/1	12/0	910	1 280	1 790	2 550	610	13/0	2 970	5 000	340	4/0	670	6/0	1450	1 000	1 / 50	4 050	1 270	1 450	1 700	2 550
					10	2 257	1 270	010	1 200	1 790	2 550	750	1 690	2 640	5 590	500	710	1 010	1 010	1650	1 800	2 000	5 300	1 270	1 680	1 800	2 550
					14	2 750	1 270	910	1 280	1 790	2 550	810	1 810	3 930	6 6 2 0	590	830	1 170	1 170	1750	1 900	2 100	5 550	1 270	1 810	1 900	2 550
	4 000	50	25		16	3 142	1 270	910	1 280	1 790	2 550	870	1 940	4 200	7 070	670	950	1 340	1 340	1850	2 000	2 200	5 800	1 270	1 940	2 000	2 550
	1 000	50	25	10	18	3 535	1 270	910	1 280	1 790	2 550	920	2 0 5 0	4 460	7 500	750	1 070	1 510	1 510	1900	2 100	2 300	6 050	1 270	2 050	2 100	2 550
					20	3 928	1 270	910	1 280	1 790	2 550	970	2 170	4 700	7 910	840	1 190	1 680	1 680	1950	2 200	2 400	6 250	1 270	2 170	2 200	2 550
					22	4 321	1 270	910	1 280	1 790	2 550	1 020	2 270	4 930	8 290	920	1 300	1 840	1 840	2000	2 300	2 500	6 450	1 270	2 270	2 300	2 550
					24	4 714	1 270	910	1 280	1 790	2 550	1 060	2 370	5 150	8 660	1 010	1 420	2 010	2 010	2050	2 400	2 600	6 600	1 2/0	2 370	2 400	2 600
					20	5 100	1 270	910	1 280	1 790	2 550	1 100	24/0	5 300	9 020	1 1 1 70	1 540	2 180	2 180	2100	2 500	2 /00	6 050	1 270	2 470	2 500	2 /00
					6	1 930	1 620	1 300	1.830	2 560	3 660	680	1 520	3 200	5 540	410	580	820	820	1700	1 900	2 100	5 150	1 620	1.830	2 560	3 660
					8	2 573	1 620	1 300	1 830	2 560	3 660	780	1 750	3 800	6 400	550	780	1 100	1 100	1850	2 000	2 250	5 650	1 620	1 850	2 560	3 660
					10	3 2 1 6	1 620	1 300	1 830	2 560	3 660	880	1 960	4 250	7 150	690	970	1 370	1 370	1950	2 150	2 400	6 050	1 620	1 960	2 560	3 660
					12	3 859	1 620	1 300	1 830	2 560	3 660	960	2 150	4 660	7 840	820	1 160	1 650	1 650	2050	2 300	2 550	6 400	1 620	2 150	2 560	3 660
					14	4 502	1 620	1 300	1 830	2 560	3 660	1 040	2 320	5 030	8 470	960	1 360	1 920	1 920	2150	2 400	2 700	6 700	1 620	2 320	2 560	3 660
	1 000	50	32	10	16	5 146	1 620	1 300	1 830	2 560	3 660	1 110	2 480	5 380	9 050	1 100	1 550	2 200	2 200	2250	2 500	2 850	7 000	1 620	2 480	2 560	3 660
					18	5 /89	1 620	1 300	1 830	2 560	3 660	1 180	2 630	5700	9 600	1 240	1 /50	2 4 / 0	24/0	2350	2 650	3 000	7 250	1 620	2 630	2 650	3 660
					20	7 075	1 620	1 200	1 0 2 0	2 560	3 000	1 240	2010	6 200	10 120	1 510	2 140	2 / 50	2 / 50	2450	2 800	2 200	7 700	1 620	2 010	2 800	3 660
					22	7 718	1 620	1 300	1 830	2 560	3 660	1 360	3 040	6 580	11 080	1 650	2 330	3 2 9 0	3 2 9 0	2650	3 050	3 300	7 950	1 620	3 040	3 290	3 660
					26	8 362	1 620	1 300	1 830	2 560	3 660	1 410	3 160	6 850	11 540	1 780	2 520	3 570	3 570	2750	3 200	3 400	8 150	1 620	3 160	3 570	3 660
28 9 005 1 620 1 300 1 830 2 560							3 660	1 470	3 280	7 110	11 970	1 920	2 720	3 840	3 840	2850	3 300	3 500	8 350	1 620	3 280	3 840	3 840				
Rtd - Design resistance of tendon cross section for design yield strength ftyd = 400 N/mm ² .									Color	codes:	1250	Min. bon	d length, 5	i0 x Ø-bai	r	530	Tensile s	trength cr	iterion				4500	Gravity	criterion		
Road - Design bond resistance between tendon and mortar											1270	Bond res	istance te	ndon-mor	tar	460	Shaft fric	tion criteri	on								
Rbrd - Design bond resistance between mortar and rock mass											910	Bond res	istance m	ortar-rock		1600	Gravity +	bond stre	ength crite	rion							
yr - Effective weight of rock mass is assumed to be 17 kN/m ³																											

NG

Ground improvement

- **•** For Class 2 & Class 3:
- As an alternative to long tendons, the rock may be reinforced around the chimney to engage lateral rock mass instead of at depth.

Proceedings of the XVII ECSMGE-2019

Geotechnical Engineering foundation of the future ISBN 978-9935-9436-1-3 © The authors and IGS: All rights reserved, 2019 doi: 17ecsmge-2019-Y-XXXX

NGI Statnett

- Measurement once a year by Statnett
- Condition control and assess the need for future tensioning
- R&D: to gain more knowledge on the <u>long-term behavior</u> and hopefully improve the current design methodology for anchors in **strong rock types**.
- At least 10 years' monitoring (posttensioning 13 September, 2017)

Figure 7. Tension force P in rock anchors measured with load cells on anchor head. Results from post-tensioning steps 0 to 6 (left side), and the first 399 days after lock-off load (right side).

Monitoring of permanent post-tensioned rock anchors Surveillance d'ancrages permanents en post-tension dans la roche

E.J. Lande

Norwegian Geotechnical Institute, Oslo, Norway Norwegian University of Science and Technology (NTNU), Trondheim, Norway

> T. Valstad, E. Stein and J.M. Josefsen Norwegian Geotechnical Institute, Oslo, Norway

> > I. Brovold Statnett SF, Oslo, Norway

Design pylon, Lysefjorden (read more)

Thank you!

NORGES GEOTEKNISKE INSTITUTT NGI.NO