Opting Out of Facial Recognition

 $\bullet \bullet \bullet$

Gavin Taylor US Naval Academy

Which Stores Are Scanning Your Face? No One Knows.

BankID på mobil blir historie: – Vil gjøre hverdagen enklere

FBI, Pentagon helped research facial recognition for street cameras, drones

Madison Square Garden Uses Facial Recognition to Ban Its Owner's Enemies

Facial Recognition Embeddings

4

"Probe Image"

Facial Recognition System

Dataset of "Gallery Images"

"Probe Image"

Facial Recognition System

Dataset of "Gallery Images"

Facial Recognition System

Dataset of "Gallery Images"

GOAL: Manipulate Gallery Image to still serve its purpose, but make it unsuitable for comparison in a black-box facial recognition system.

Dataset of "Gallery Images"

"Adversarial" examples for ML

Panda, 57.7% confidence

Gibbon, 99.3% confidence

[Goodfellow et al., "Explaining and Harnessing Adversarial Examples" ICLR 2015]

"Adversarial" examples for ML

Panda, 57.7% confidence

Gibbon, 99.3% confidence

Given a neural network, its parameters θ , an image x, and a loss function $\mathcal{L}(x,\theta)$, maximize the loss function by altering the image a limited amount ($||\Delta x||_{\infty} < \epsilon$).

Why does this work?

"Adversarial" examples for ML

Panda, 57.7% confidence

Gibbon, 99.3% confidence

Given a neural network, its parameters θ , an image x, and a loss function $\mathcal{L}(x,\theta)$, maximize the loss function by altering the image a limited amount ($||\Delta x||_{\infty} < \epsilon$).

Black-box adversarial examples: "Ensemble" approach

Construct several neural networks, and construct adversarial permutations that affect the loss function on all of them - empirically transferable

$$\sum_{i} L(x, \theta_i)$$

GOAL: Manipulate Gallery Image to still serve its purpose, but make it unsuitable for comparison in a black-box facial recognition system.

Dataset of "Gallery Images"

LowKey Optimization Function

$$\max_{x'} \frac{1}{2n} \sum_{i} \frac{\|f_i(x) - f_i(x')\| + \|f_i(x) - f_i(G(x'))\|}{\|f_i(x)\|} - \alpha LPIPS(x, x')$$

- x: Cropped and aligned facial image
- $f_i(x)$: Embedding by model i
- LPIPS: Measure of perceptual difference between two image
- G(x): Gaussian-smoothed facial image

Clean Images

Images protected with LowKey

Effectiveness Against Industrial Black Boxes

- 100,000 images from 530 identities, plus 1 million distractor images
- 100 identities randomly chosen, and all images from those identities manipulated
- If any image from that identity appears in the set of possible matches, the facial recognition system has succeeded

Effectiveness Against Industrial Black Boxes

- 100,000 images from 530 identities, plus 1 million distractor images
- 100 identities randomly chosen, and all images from those identities manipulated
- If any image from that identity appears in the set of possible matches, the facial recognition system has succeeded

	Amazon Rank-1	Amazon Rank-50	Microsoft Rank-1
Clean	93.7%	95.4%	87.7%
LowKey	0.6%	2.4%	0.1%

Valeria Cherepanova

Micah Goldblum

Tom Goldstein

Harrison Foley

Try it yourself: https://lowkey.umiacs.umd.edu/