

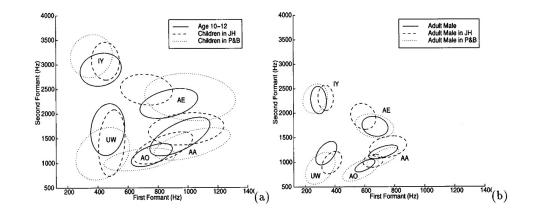
Norwegian University of Science and Technology

Collaborative Projects in Speech Technology

Some highlights

Torbjørn Svendsen

Child speech recognition


- Research (master projects++) since 2011
 - Fjær 2011; Walsøe 2016; Thorsrud 2017; Steinskog 2021
 - Interspeech 2013 (Doddipatla&Svendsen)
- Focus on voice conversion approaches to utilize adult speech databases for training systems also for children
- Currently two research projects with PhD addressing child speech recognition

e-LADDA: Early language development in the digital age

- Interdisciplinary Marie Sklodowska-Curie Innovative Training Network
- Goal: establish whether the new and intuitive interactions afforded by digital tools impact on young children's language development and language outcomes in a positive or adverse way.
- Focus on child/computer interaction and computer assisted early language acquisition
- NTNU: Child speech recognition and synthesis
- <u>https://www.ntnu.edu/e-ladda/</u>
- PhD Student: **Zijian Fan**

Children vs adults

- More acoustic variability due to language development
- Non-linear spectral changes due to physiology
- Also: cognitive development and stage of language acquisition

From: Lee, Potamianos, & Narayanan : Acoustics of children's speech: Developmental changes of temporal and spectral parameters. *J. Acoust. Soc. Am* **105**, 1455–1468 (1999).

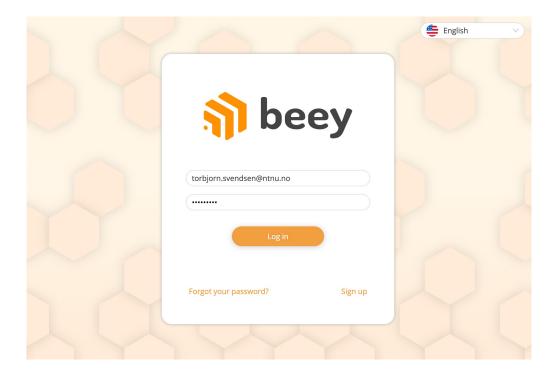
Non-linear spectral modification alpha=0.15 30 oposed Method 00 Mapping **Time Scaling** nterpolation Amplitude (dB) Adult's Speech 20 15 Children's Training Models Speech 10 0 1000 2000 3000 4000 5000 6000 7000 8000 Frequency (Hz)

- Traditional methods: VTLN, bilinear warp
- New proposal, including speed modification and linear warp
- Also: Transfer learning, end-to-end methods

Teflon

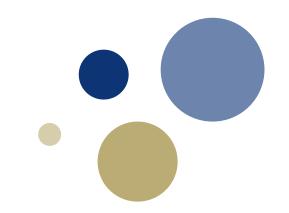
- NordForsk project
 - Aalto University, Tampere University (Finland)
 - Karolinska Insitutet (Sweden)
 - University of Oslo, NTNU (Norway)
- Recognizing speech from 2nd language child learners
 - Norwegian, Swedish, Finnish
 - pronunciation assessment in a gamified learning environment
 - child speech
 - speech pathologies
- PhD Student: Cao Xinwei

Goodness of pronunciation


 Estimation of how well the pronunciation of a student matches the correct pronunciation

$$GoP(p) = \frac{1}{T} \left| \log \mathcal{P}(p|\mathbf{O}) \right| = \frac{1}{T} \left| \log \frac{\mathcal{P}(\mathbf{O}|p)\mathcal{P}(p)}{\sum_{q \in Q} \mathcal{P}(\mathbf{O}|q)\mathcal{P}(q)} \right|$$

• Corrective feedback to student


NordTrans - Technology for automatic speech transcription in selected Nordic languages

- EEA-grants project, NTNU, Newton Technologies (CZ), TU Liberec (CZ)
- Improve the state-of-the-art quality and usability of the automatic speech recognition (ASR) technology for Swedish and Norwegian.
- Focus on streaming audio, e.g radio, TV, internet podcasts, etc.
 - Other applications: transcription of speeches in parliaments and similar public institutions, as well as spoken archive mining
- Based on ASR engines developed by Newton and TUL
- 1 PhD student
 - Algorithm development
 - Semantically meaningful performance metrics

Norwegian University of Science and Technology

Semantically Meaningful Metrics for Norwegian ASR Systems

Janine Rugayan, Torbjørn Svendsen, Giampiero Salvi Prague, November 24, 2022

How do we measure ASR performance?

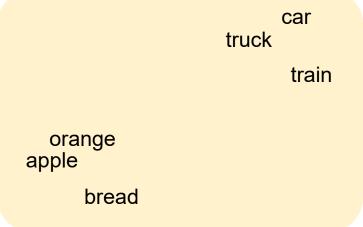
- Word error rate (WER)
 - Widely used metric
 - WER = total number of errors / total number of words
 - All errors are weighed equally

Reference: This is a cat. ASR1: This is a <u>bat</u>. ASR2: <u>It</u> is a cat.

What is the problem?

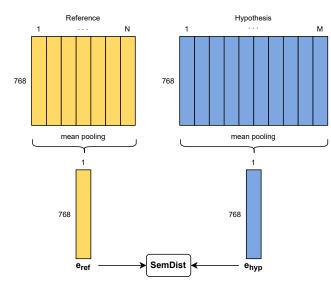
- Not all errors are equally important
- We want a more robust and semantically meaningful measure compared to WER
- Norwegian language's special characteristics
 - two written standards: Bokmål and Nynorsk

"to come"


Bokmål: å komme

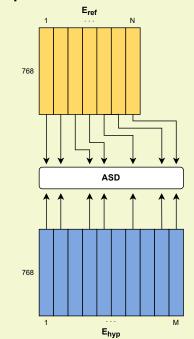
Nynorsk: å kome, å koma, å komme, å komma

- orthography is not strict
- no standard way of speaking
- high number of compound words småbarnsfamiliehovedadministrator "the chief administrator of a family with small children"

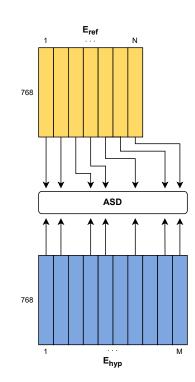

Solution: use semantic information

- Recently developed language models capture semantic information
 - Utilized to extract embeddings which are numerical representations of words in a vector space
 - Proximity in the vector space indicates semantic similarity

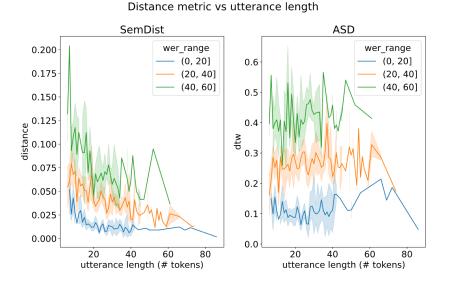
Semantic-based metrics


Semantic Distance¹

¹ Kim, S., Arora, A., Le, D., Yeh, C.-F., Fuegen, C., Kalinli, O., Seltzer, M.L. (2021) Semantic Distance: A New Metric for ASR Performance Analysis Towards Spoken Language Understanding. Proc. Interspeech 2021, 1977-1981, doi: 10.21437/Interspeech.2021-1929
² Rugayan, J., Svendsen, T., Salvi, G. (2022) Semantically Meaningful Metrics for Norwegian ASR Systems. Proc. Interspeech 2022, 2283-2287, doi: 10.21437/Interspeech.2022-817

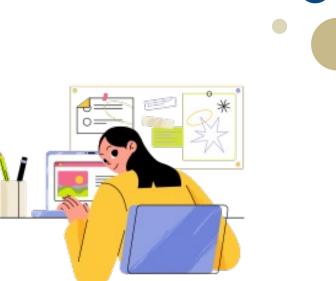

Aligned Semantic Distance²

our proposed method



Aligned Semantic Distance (ASD)

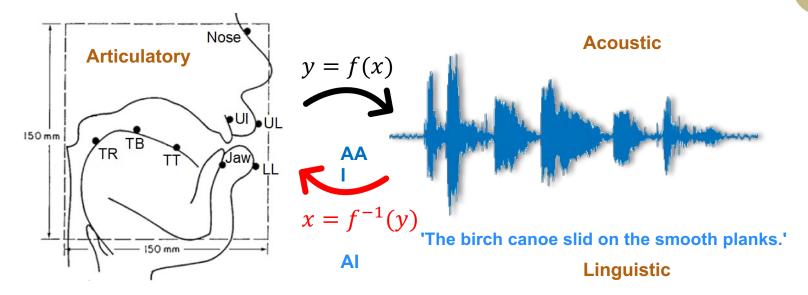
- Word-to-word comparison of embeddings
- Find the optimal alignment between the reference and ASR hypothesis
- Experiments:
 - used existing Norwegian language model for extracting embeddings
 - applied ASD to transcriptions of various speech data sources (NB Tale, Rundkast, Stortinget)


Our Results

- Our proposed method ASD is stable with respect to utterance length
- ASD provides a more meaningful metric compared to word error rate
- ASD is useful for Norwegian
 - low penalty for equivalent Bokmål and Nynorsk words

Future Work

- Perform a correlation study between user-rated transcriptions and ASD (ongoing)
- Evaluate the metric against a downstream task
- Explore application of ASD on other languages, for instance, English


SCRIBE – Machine Transcription of Conversational Speech

Develop a Norwegian speech-to-text transcription system for multiparty conversations in realistic recording conditions

- Develop models that are robust to disfluencies that are typical in spontaneous conversational speech, that can cope with turn taking and take advantage of the context in the dialog.
- The models will also support the use of spoken dialects and different orthographies (Bokmål, Nynorsk, or dialect specific).
- Define evaluation metrics that predict the quality of the transcription based on semantics rather than merely word error rate.
- Contribute to the theoretical and methodological development of machine learning with sparse data.

Recent PhD Projects

Reza Sabzi: Articulatory inversion

Recent PhD Projects

Femke Gelderblom: Evaluating PerformanceMetrics for Deep Neural Network-based Speech Enhancement Systems

Important finding: Popular metrics (PESQ, STOI, HASPI...) for assessment of speech quality does not match human perception for quality evaluation of enhanced speech.