

Natural gas in the Energiewende

Franziska Holz

Based on joint research with Christian von Hirschhausen, Claudia Kemfert, Clemens Gerbaulet, Casimir Lorenz et al.

Structure of this talk

- 1. What is the German Energiewende?
 - 1. Mandatory RES targets
 - 2. Nuclear phase-out
 - 3. Economy-wide climate targets to 2030/2050
- 2. Sector 1: Electricity
- 3. Sector 2: Transportation
- 4. Sector 3: Industry
- 5. Conclusions and outlook

"Energiewende" in Germany: Strong role for renewables

	Reduction of nuclear energy	Share of Renewable Energy		Reduction GHG- Emissions	Reduction of Energy Demand			
		Gross final energy	Electricity Production		Primary Energy	Domestic Heat	Final Energy Transport	Electricity Demand
2015 2017 2019	-47% -56% -60%							
2020		18%	35%	-40%	-20%	-20%	-10%	-10%
2021 2022 2025	-80% -100%		40-45%		No	evolicit an	d clear role	e for
2030 2035		30%	50% 55-60%	-55%	No explicit and clear role for natural gas			
2040		45%	65%	-70%				
2050		60%	8o%	-80% bis 95%	-50%	-80%	-40%	-25%
Base year	2010	-	-	1990	2008	2008	2005	2008

The next step: An economy-wide "climate protection plan" to 2050

Table:

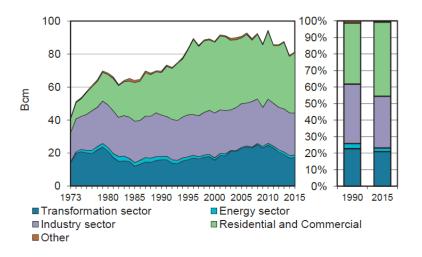
Emissions and emissions targets by sector, in Mio. t CO_2 equiv.

Sector	1990	2014	2030	2030 (reduction to 1990)
Energy	466	358	175 - 183	62 - 61 %
Buildings	209	119	70 - 72	67 - 66 %
Transport	163	160	95 - 98	42 - 40 %
Industry	283	181	140 - 143	51 - 49 %
Agriculture	88	72	58 - 61	34 - 31 %
Others	39	12	5	87 %
Sum	1248	902	543 - 562	56 - 55 %

Germany (and Europe) have a very comfortable supply situation

What to do with all the natural gas?

Natural gas use in Germany today

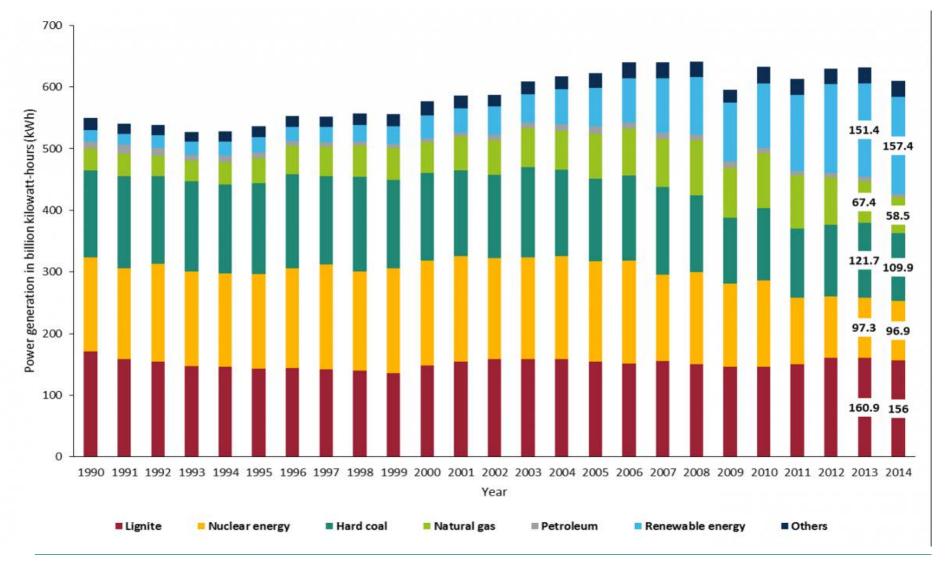

Power sector

Germany:

- 14% of installed capacity (~ 30 GW), of which ~ ⅓ are 10 years old less
- ~10% of electricity generation

Transportation

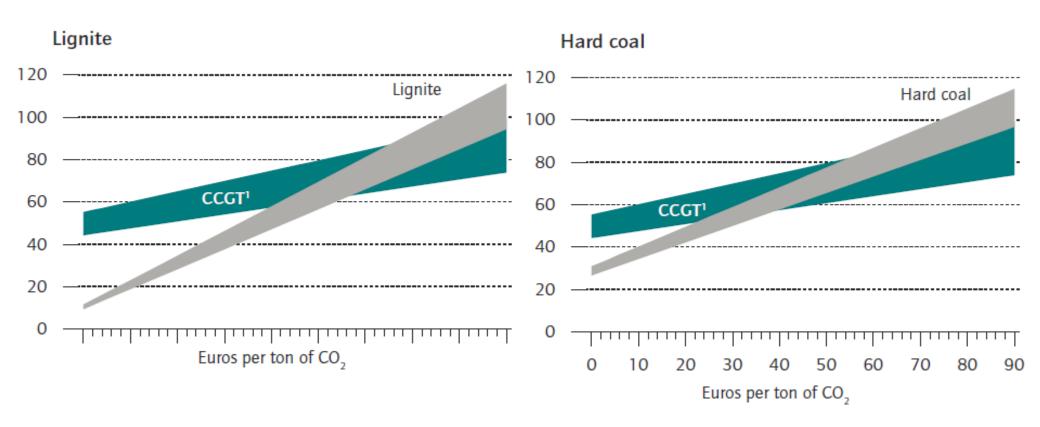
0.2% of passenger carsrun on natural gas


Heat

- Households:
 - Existing building stock: 50% market share of natural gas, new-built 40%

Industry: large role as fuel and feedstock

Only 10% natural gas but more than 50% coal in the electricity mix



CO2 switch price to natural gas far from current CO2 price levels

Depending on the efficiency level of the power plant considered, the switch CO_2 price starts at around 40 euros per ton for lignite; for hard coal, the corresponding number is around 20 euros per t CO_2 .

Source: Oei et al. (2014)

EU power utility boss: 'Coal is finished, the hard question now is gas'

By Frédéric Simon | EURACTIV.com

4. Okt. 2017 (updated: ## 7. Nov. 2017)

EURACTIV website, retrieved February 22, 2018 (https://www.euractiv.com/section/electricity/interview/eu-power-utility-boss-coal-is-finished-the-hard-question-now-is-gas/)

Natural gas in the European power sector 2015-2050

Results with the nodal hourly electricity model ELMOD

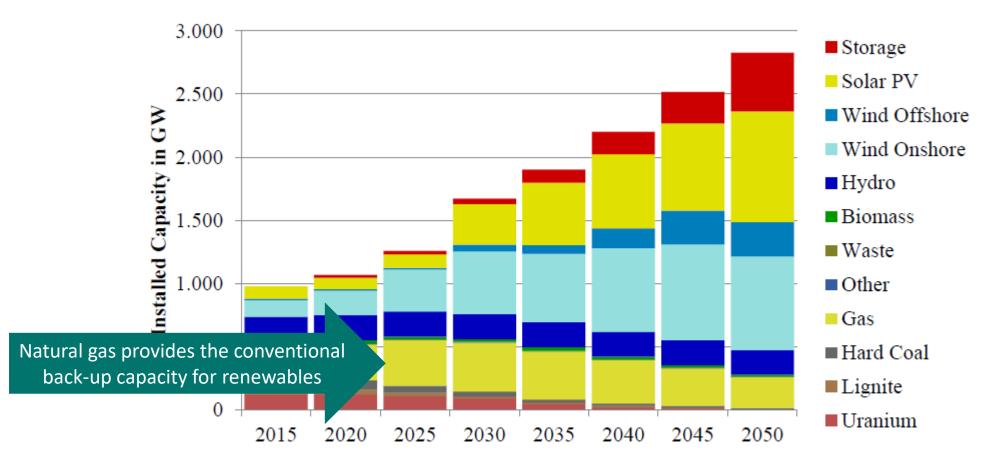


Figure 12: Installed electricity generation and storage capacities in Europe 2015–2050

Electricity generation in Europe 2015-2050

Results with the nodal hourly electricity model ELMOD

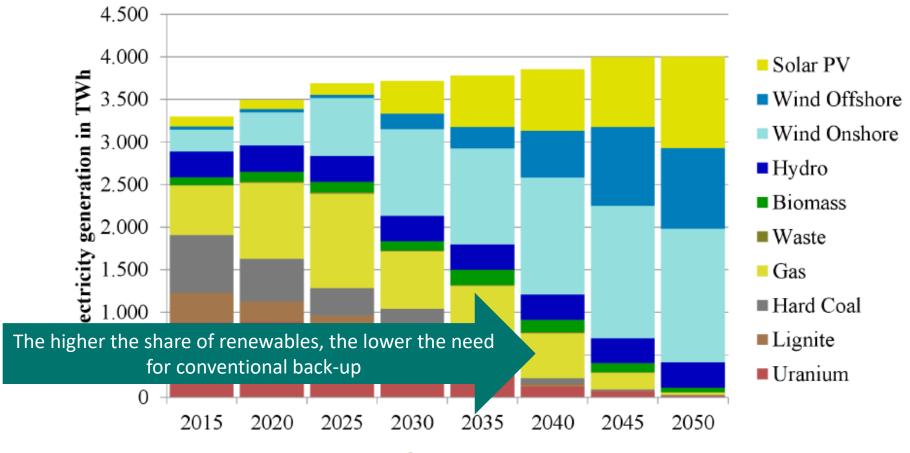


Figure 13: Electricity generation 2015–2050

Early decarbonization of the power mix phases natural gas out earlier

ELMOD results 2050 by decarbonization target of the power

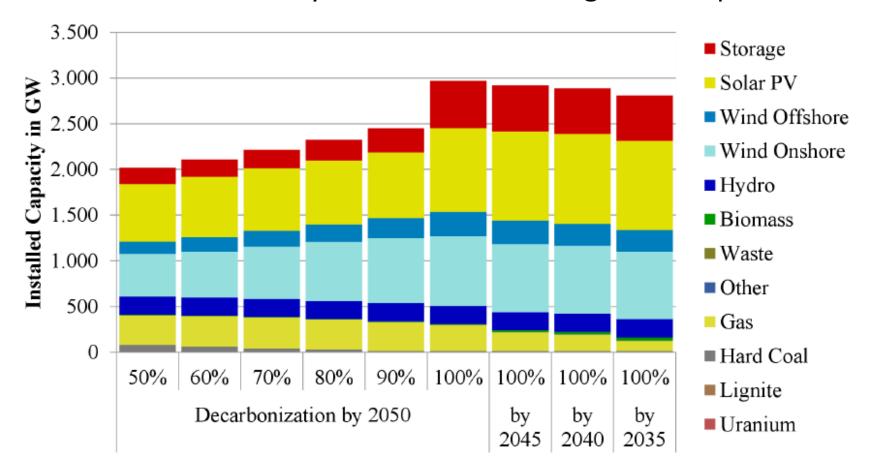


Figure 23: Installed capacity 2050 subject to the decarbonization target

Natural gas would benefit from the availability of CCS

ELMOD results assuming CCS available

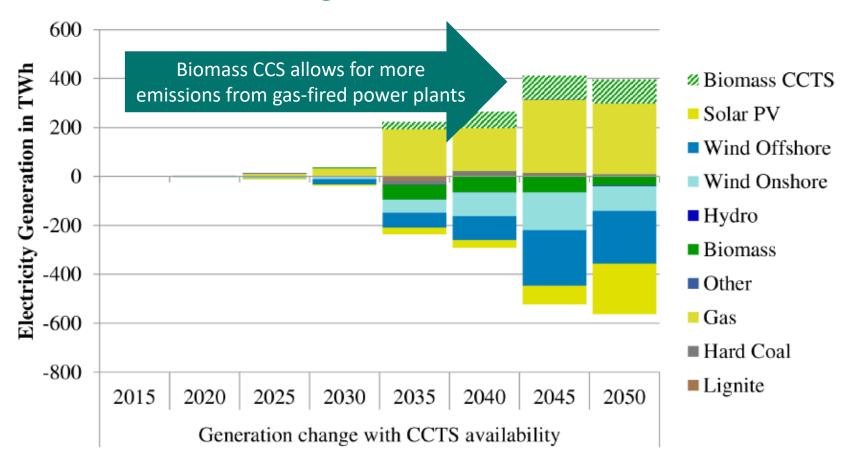


Figure 21: Difference in electricity generation with CCTS available

Source: Gerbaulet and Lorenz (2017)

"Niche use"?: Small-scale LNG

- Small barges (river and coastal)
- Trucks (long-distance and local use)

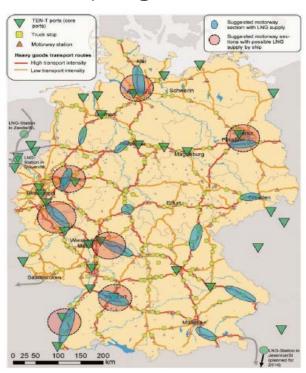


Figure 4: Plan for initial LNG filling station network with 14 stations in the blue areas Source: Peters-von Rosenstiel 2014, p.22

Requires development of infrastructure

Advantage:

lower emissions

More than 500 Between 300 and 500

Figure 14: Location of most frequented filling stations

Source: K.B. Hainsch (2016) "A complementarity approach of analyzing the impact of simultaneous routing and refueling in a congested network". TU Berlin.

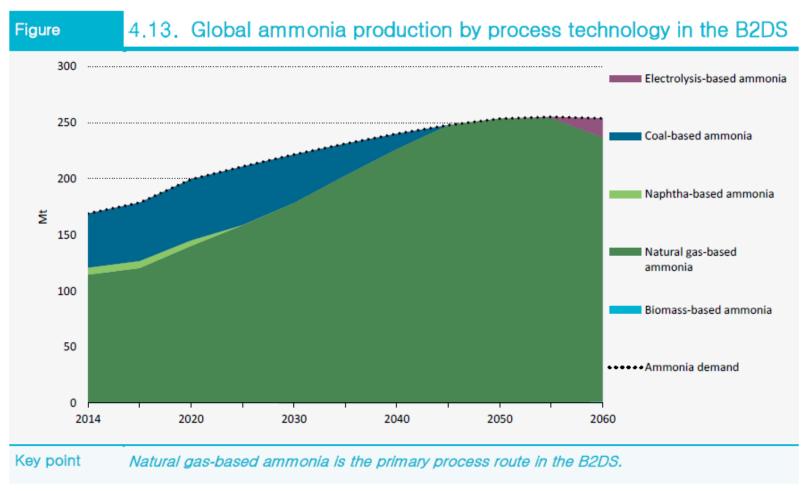
Country Borders Germany Other Roads

Natural gas use in industry

Industry

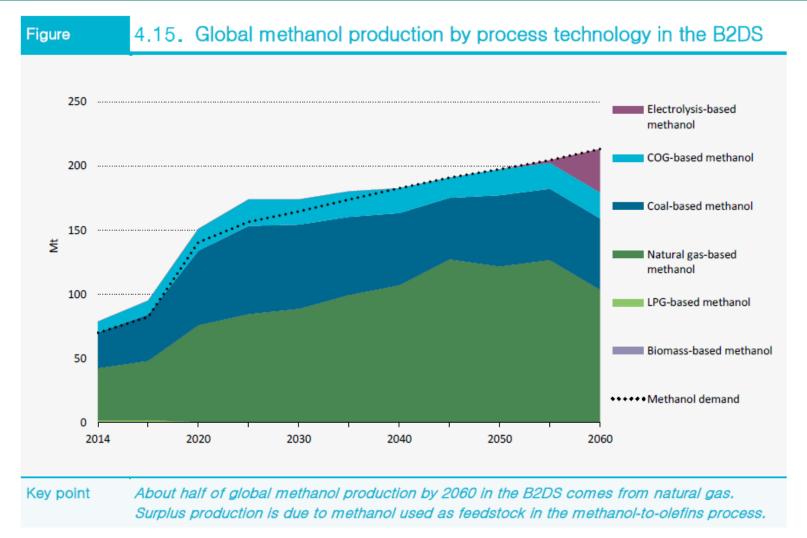
- A sector yet to be better understood by (energy) economists
- Natural gas is used for

Process heat


Natural gas can potentially keep its role (in combination with CCS?) and partially maybe even replace coal

• Feedstock in (petro-) chemicals and ammonia production

Natural gas can hardly be replaced


Industry: ammonia production strongly relying on natural gas feedstock

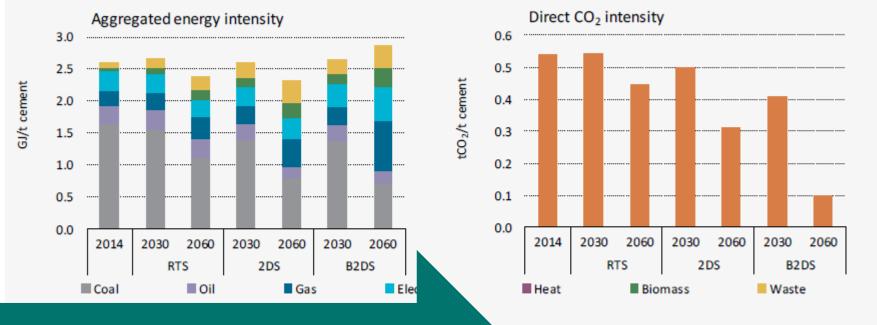
Source: IEA (2017): Energy Technology Perspectives: Catalysing Energy Technology Transformations. Paris: OECD / IEA. p. 182. Note: B2DS is the "deep decarbonization scenario" ("Beyond 2 degrees") which aims at 1.75°C temperature increase by 2100). It assumes early deployment of low-carbon technologies.

Industry: Methanol production strongly relying on natural gas feedstock

Source: IEA (2017): Energy Technology Perspectives: Catalysing Energy Technology Transformations. Paris: OECD / IEA. p. 184.

Industry: steel production continues to rely on natural gas

4.16. Global energy intensity and direct CO₂ emissions of crude steel **Figure** production by scenario Aggregated energy intensity Direct CO2 intensity 20 tCO₂/t crude steel 1.2 GJ/t crude steel 15 0.8 10 0.4 5 0 0.0 2014 2030 2060 2030 2060 2030 2014 2030 2060 2030 2060 2030 2060 2060 RTS RTS 2DS B2DS 2DS B2DS ■ Coal ■ Oil Gas Electricity Heat Biomass


Source: IEA (2017): Energy Technology Perspectives: Catalysing Energy Technology Transformations. Paris: OECD / IEA. p. 186.

Industry: cement production to use more natural gas (with CCS) in climate scenarios

4.21. Energy intensity and direct CO₂ emissions intensity of global cement production by scenario

Natural gas has a role to play in industry, as feedstock and as a relatively low-emissions fuel

in the calcination of limestone for the production of clinker, rgy intensity includes energy use in process technologies later years in low-carbon scenarios primarily due to the

Source: IEA (2017): Energy Technology Perspectives: Cataly

g Energy Technology Transformations. Paris: OECD / IEA. p. 192.

Gas exit plans? Beyond the academic debates

- National gas exit strategies emerge in parallel to coal exit efforts
- Focused on the energy sector: power generation, building

heating

900

700

600

500

400

200

100

200

2010

2020

2030

2040

2050

Historical

Without new initiatives

Figure 0.3 Consumption of coal, oil and natural gas 1990-

Danish *Energy Strategy 2050* (2011): 100% renewables in the energy mix by 2050

But while there is widespread agreement that heating must be decarbonised in order to meet the UK's 2050 carbon targets, the recently published clean growth strategy contains few details on how this should be implemented.

UtilityWeek

REGISTER

Conclusions and outlook I

- Main elements of the Energiewende may be EU and global energy transition as well (at different paces)
 - Strong role of renewables
 - Phase-out of coal
 - Phase-out of nuclear
- Power sector: strong competition with fast deployment of renewables and/or storage \rightarrow not even a need for gas bridge
- Longevity of niche applications such as natural gas in transportation is questionable
- Focus on industry as long-term consumer
- \rightarrow CCS is needed

Conclusions and outlook II

Modeling and regulation economics to understand perspectives of (natural) gas

Natural gas use in the building sector is likely to be completely phased out because there are low-cost decarbonization options

- Natural gas use in the power sector is more and more decreasing on economic grounds (strong growth of renewables and storage, cheap coal, low CO₂ prices)
- Natural gas use in transportation is not competitive (yet?) in most applications
- Natural gas use in industry is likely to remain and even grow if CCS is deployed
- Future use of pipeline network: natural gas or "green gas" (from P-2-G)?

Natural gas ... greener than you think?

Vielen Dank für Ihre Aufmerksamkeit.

DIW Berlin — Deutsches Institut für Wirtschaftsforschung e.V. Mohrenstraße 58, 10117 Berlin www.diw.de

Franziska Holz (fholz@diw.de)

with Christian von Hirschhausen || Claudia Kemfert || Clemens Gerbaulet || Casimir Lorenz || Jens Weibezahn