
U.S. DOE plans: H2@SCALE

Inevitable questions (A partial list..)

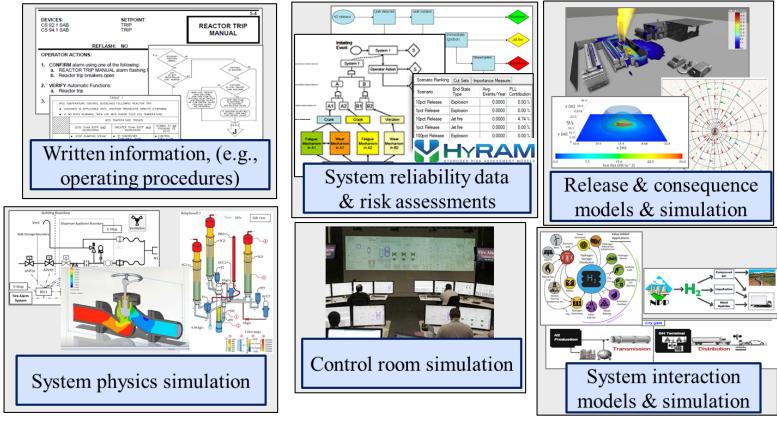
- How do we demonstrate that it's safe?
- How do we design appropriate regulations/safety standards/etc.
- How do we balance safety & economics?
- How will the system adapt as vehicle infrastructure changes?

Systems Risk and Reliability Analysis (SyRRA) lab

- Development of rigorous methods to support decision making on complex systems with multiple types of data & knowledge
 - Human + system + environment + complex phenomena

Scientific capabilities

- Structured thinking, logic
- System decomposition
- Probability & Bayesian modeling
- Data analysis
- Artificial intelligence for prognostics; operator decision support systems

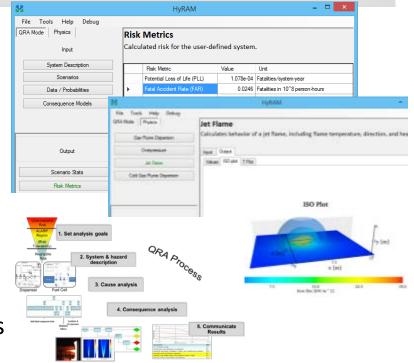

Specific problem spaces

- Data fusion & model integration at multiple scales
- Bayesian Networks
- Human Reliability Analysis
- HyRAM (Hydrogen quantitative risk assessment)
- Nuclear power
- Hydrogen & NG infrastructure

Fundamental question: How can we use the data revolution to solve system-level problems?

QRA has always been a data-integration problem. But the data is changing.

Completed work: HyRAM: Making hydrogen safety science accessible through computational tools


HYRA

Core functionality:

- Quantitative risk assessment (QRA) methodology
- Frequency & probability data for hydrogen component failures
- Fast-running models of hydrogen gas and flame behaviors

Key features:

- GUI & Mathematics Middleware
- Documented approach, models, algorithms
- Flexible and expandable framework; supported by active R&D

Free at http://hyram.sandia.gov

Lot line

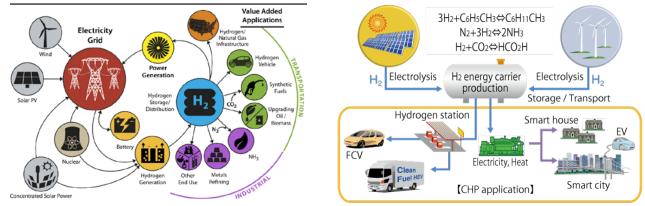
Completed work: Using scientific QRA to harmonize safety distances: ISO19880-1 Annex A

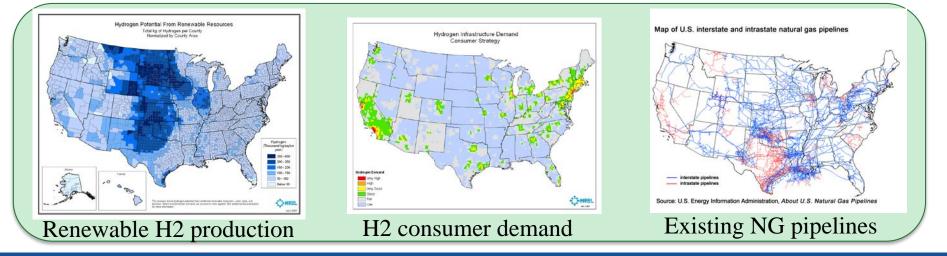
- International agreement on approach, safety examples
 - Sub-team: US, UK, Japan, Germany, France all agreed to the approach; brought regional choices & assumptions
 - All calculations using HyRAM

Impact:

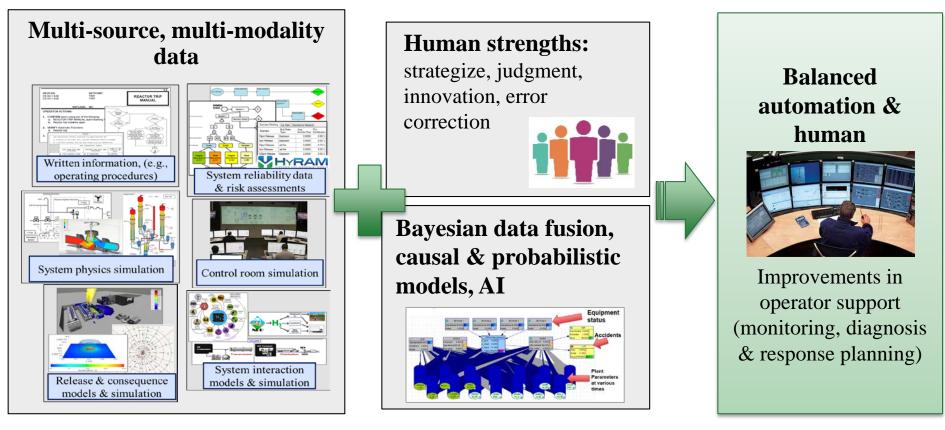
- US benefits from harmonized NFPA-ISO
- EU: Reducing cross-border regulatory challenges

HyRAM directly enabled progress:


- Real-time use of HyRAM was a key reason for coming to consensus;
- Collaborators HyRAM usability, speed combined with methodology flexibility and transparency, as *more beneficial to permitting than the resulting distances*.


	Case2A	Case2B	Case2C	Case2D	Case2E	
Calculation approach	QRA	QRA	Conseq. only	Conseq. only	Conseq. only	
Acceptance criterion	AIR<1.0e-5	AIR <1.0e-5	< 3.0W/m2	< 1.26kW/m2	< 1.26kW/m2	
Pipe maximum flow diameter (either the ID or effective ID based on flow restriction)	0.3125in (ID from modules3-5)	0.3125in (ID from modules3- 5)	N/A. System desigr consequence-only a		d in	
Release diameter considered	[All releases from 0.003125in - 0.3125in]	[All releases from 0.003125in – 0.3125in]	1mm	1mm	1mm	
Internal Temp.	15° C	15° C	15° C	15° C	15° C	
Internal Pressure	700 bar	700 bar	700 bar	700 bar	700 bar	
External Temp.	15° C	15° C	15° C	15° C	15° C	
External Pressure	1 atm	1 atm	1 atm	1 atm	1 atm	
System configuration (sources of releases)	Compressors, 40 Cylinders, 20 Valves, 8 Instruments, 0 filters, 0 flanges, 24 (non-welded) joints, 0 hoses, 20m H2-S	2 Compressors, 48 Cylinders, 32 Valves, 12 Instruments, 0 filters, 0 flanges, 44 (non-welded) joints, 0 hoses, 30m pipes. upply-Storage		System design is not considered in quence-only approaches.		
Credit for additional mitigations (e.g., gas or flame detection) or other documented considerations (e.g., direction of release)	(reducti 90 frequ	45 ber	©	HP-Velve Cableet	Pre Cool	
Number of exposed persons	(20	12 Trailer 10/500 TOD ber 1- Bupply Ampl Ampl Bu	Compressor - C Arm illding / Shop	ontainer		
) Trailer Panel	4 Stat	tion	Dispenser	m	consequence- only approaches. 2.75 m	
				line		

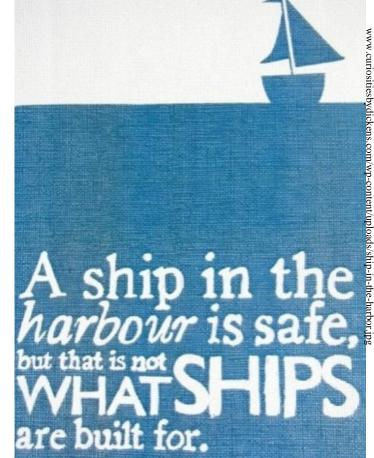
Proposed research: Optimize location of H2 infrastructure within NG pipelines


Where should we place H2 extraction stations to minimize cost of early H2 infrastructure and still maintain required reliability of both H2 and LNG users?

Proposed research: Develop comprehensive framework for automation-assisted operator support based on fusion of knowledge and data.

- > Putting the power of big data into the hands of critical infrastructure operators
- Helping prepare operators for the current & future "known-unknowns" and "unknown-unknowns.

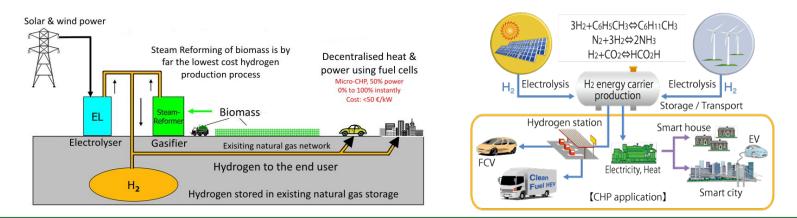
Research Questions & Partnering

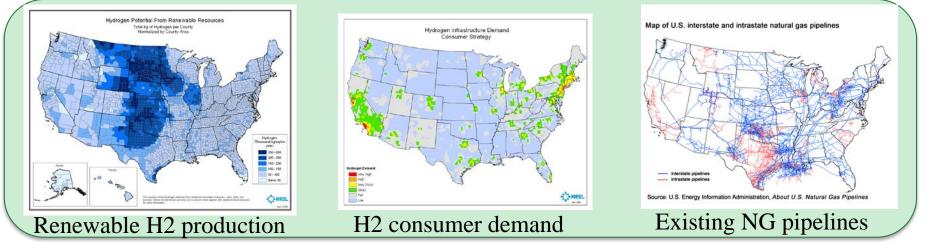


- Questions
 - Control room simulation + process physics simulation + artificial intelligence
 - E.g., for designing & optimizing human-machine collaboration
 - System-level diagnostics / prognostics using multiple sources of data

- Seeking partners with..
 - Physical process simulation data sets
 - Control room simulation capabilities (gas?
 - Condition monitoring data

Reliability engineering supports decision-making


- A process to explore priorities, to build consensus, to encourage discourse among interested parties, to build a common basis for safety discussions
- By building an understanding of:
 - What the system is supposed to do (performance)
 - The sources, causes, and likelihood of failures (physics based, human, computational, etc.)
 - Strategies to reduce failure (e.g., design, operation, maintenance)



Proposed research: Optimize location of H2 infrastructure within NG pipelines

- SYRRA
- Assessing the economics and reliability of hydrogen distribution via NG pipelines. Extractions units, delivery to end users, Local storages, ...

