CHALMERS

UNIVERSITY OF TECHNOLOGY

Global Mobility Scenarios

Sonia Yeh Department of Space, Earth and Environment Chalmers University of Technology

The Future of Transport System NTNU, Trondheim, NORWAY March 2, 2018

Global Policy Agenda on Sustainable Transport Development Has Shifted to Climate Abatement

- Economic & equity aspects, alongside the environmental (air pollution, congestion, etc)
 - Promoted by international organizations, development banks

- Paris Agreement @ UNFCCC COP21 sets up a new climate policy regime for transport
 - Based on nationally determined contributions (NDC) of parties
 - Parties' individual & joint assessment of individual & collective progress is critical

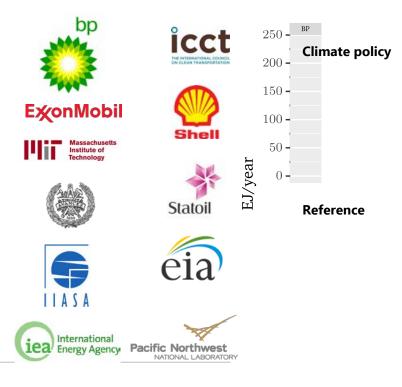
CHALMERS UNIVERSITY OF TECHNOLOGY

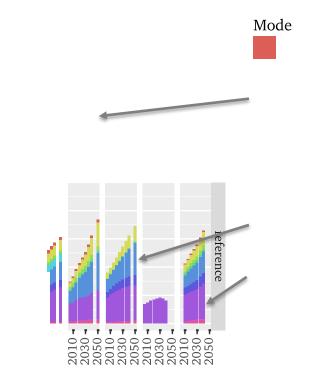
Anticipating Future Scenarios....

Global trends

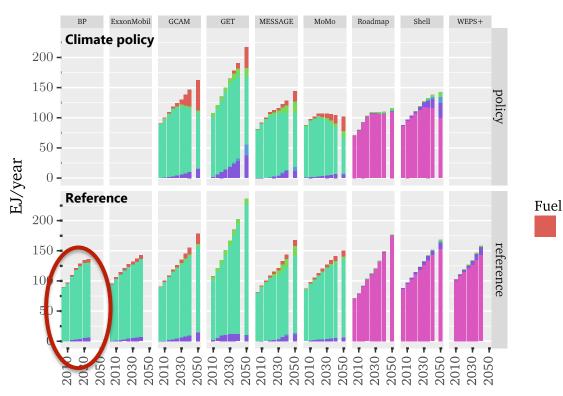
Policy & tech change

Markets and geopolitics

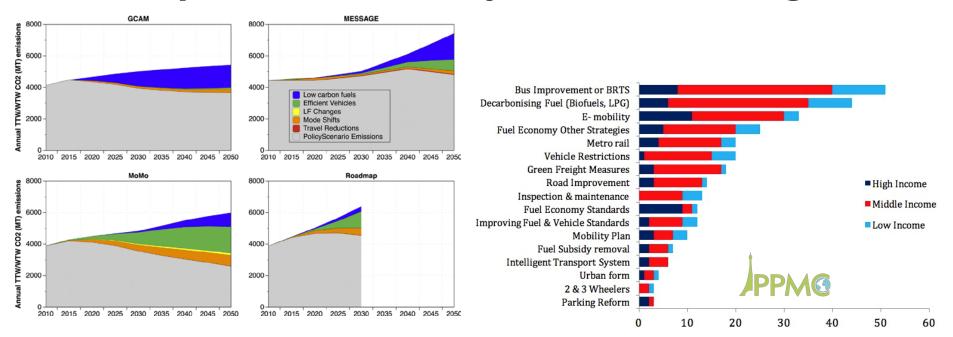




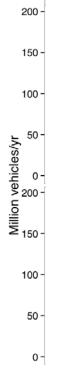
Global shale gas basins, top reserve holders

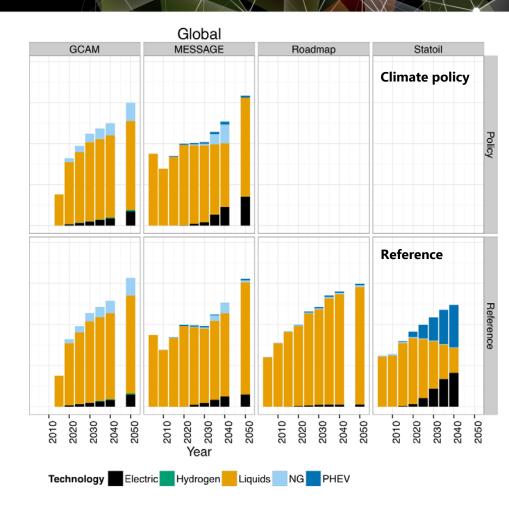


Transport energy by mode: LDV & HDV still dominate, aviation & freight are the fastest growing modes


Global: Fossil liquids still the dominant fuel even in 2° scenarios

- Some show only small energy reductions relative to baseline
- Overall greater share of alt. fuel use
- Liquids (including biomass liquids) still dominate in the policy


CHALMERS UNIVERSITY OF TECHNOLOGY


Global Optimal (?) Pathway to Reach 2º Target

NDCs Sees Potentials for Ambitious Action and Huge Investment Needs in the Transport Sector

 Share of electric (EV + PHEV) will be growing, but how fast and by how much?

Global EV policy targets lacking behind 2° scenario

Table 2. Comparison of announced policy targets with model-projected number of electric vehicles needed to be on the road by 2020/2025 in order for the transportation sector to be consistent with the 2 °C target. Average values across models are shown; full ranges in parentheses.

	China	U.S.	Global
item	28 million	29 million	113 million
	(2–47)	(9–42)	(35–180)
Policy/Target	5 million by 2020 ^a	1 million EVs by 2015 ^b	20 million by 2020, 100 million in 2030 ^d
		3.3 million by 2025 ^c	

a Energy Saving and New Energy Auto Industry Development Plan (2012–2020) (State Council, 2012).

b President's pledge (https://www.whitehouse.gov/sites/default/files/other/fact-sheet-one-million-advanced-technology-vehicles.pdf). c MOU, 8 states (<u>http://www.arb.ca.gov/newsrel/newsrelease.php?id=620</u>). d IEA Electric Vehicles Initiative (EVI) (http://www.iea.org/topics/transport/subtopics/electricvehiclesinitiative/).

Major Uncertainty: Consumer Choices

- Fuel cost
- Refueling station availability
- Range Anxiety cost
- Model availability
- New technology risk premium
- Towing capability
- Supply chain logistics
- Willingness to pay

CHALMERS UNIVERSITY OF TECHNOLOGY

Major Uncertainty: Three Transitions

1. Policy driven transition: Electric vehicles

- Emissions, efficiency benefits
- Range, cost concerns

2. Industry driven transition: Autonomous vehicles

- Safety, traffic benefits
- Lowering Value of Time could have unknown impact on total distance traveled

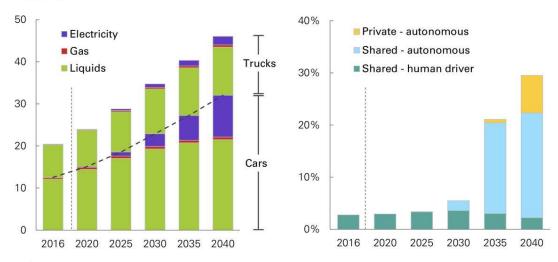
3. Consumer driven transition: Mobility as a service (MaaS)

- Ride-sharing
- Fleet owned, away from personal ownership
- Fewer vehicles on the road, but faster technology turnover

For the first time ever, BP Energy Outlook incorporates 3 mobility revolutions (EVs, shared mobility, autonomy) in

their projections

- Predicting large shares of personal Vkm be autonomous and/or shared,
- 30% personal vkm be electrified by 2040


Sectors: Transport

Trillion km

Road transport will be affected by the mobility revolution...

Vehicle kilometres (Vkm) by fuel type

New mobility share of total Vkm

Cars excludes 2- and 3- wheelers

Conclusions

- Transport systems play a critical role in future energy transitions
 - Emerging trends will hinge on the development of technology, policy, resource availability, consumer choice, and geopolitics
 - > The future is highly uncertain
- New trends and disruptive innovation bring opportunities and challenges and they need to be better reflected in global models.

CHALMERS

UNIVERSITY OF TECHNOLOGY