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Conceptualizing energy transitions

« What is an energy
transition?

0]

0]

Change in fuel
supply?

Shift in technologies
that exploit fuel, e.g.
prime movers end
use devices?
Switch from an
economic or
regulatory system
(e.g. Cuba)?

Time taken for socio-
technical diffusion?
At what scale?

Table 1
Five definitions of energy transitions.

P

/ Centre on

Innovation
\ and Energy
\ . Demand

Definition

Source

A change in fuels (eg., from wood to coal or
coal to oil) and their assocated technologies
[e.g., from steam engines to internal
combustion engines)

Shifts in the fuel source for energy production
and the technologies used to exploit that fuel
A particularly significant set of changes to the
patterns of energy use in a society, potentially
affecting resources, Carriers, converters, and
SEIVices

The switch from an economic system
dependent on one or a series of energy sources
and techmologies to another

The time that elapses between the
introduction of a new primary energy source,
or prime mover, and its rise to claiming a
substantial share of the overall market

Hirsh and Jones |22

Miller et al. [23]

O'Conmor [24]

Fouguet and Pearson [25]

smil [26]




Conceptualizing energy transitions

What does the
academic literature
say?

“Energy transitions have
been, and will continue to
be, inherently prolonged
affairs, particularly so in
large nations whose high
levels of per capita energy
use and whose massive an
expensive infrastructures
make it impossible to greatl
accelerate their progress
even if we were to resort to
some highly effective
interventions ...”
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Table 2
The differences in timing and speed of energy transitions in Europe,
Phase-out traditional Diffusion Diffusion
renewables phase-in coal; mid point speed
Core England 1736 160
Rim Germany 1857 102
France 1870 107
Netherlands 1873 105
Periphery Spain 1919 111
Sweden 1922 06
Italy 1919 g8
Portugal 19449 135
Phase-put coal phase-in oil/gas/electricity:
Core Portugal 1966 47
Italy 1960 b5
Sweden 1963 &7
Rim Spain 1975 60
Netherlands 1962 62
France 1972 b5
Periphery Germany 1984 50
England 1979 &7




Conceptualizing energy transitions

YEARS TO SUFPLY 5%
OF ALL PRIMARY ENERGY

YEARS TO SUPPLY 25%
OF THE MARKET SHARE
AFTER REACHING 5%

MATURAL GAS
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WIND ELECTRICITY

NUCLEAR

ELECTRICITY
Nuclear and wind have not reached
25 percent; photovaltaics hardly
registers.

120
100
80
60
40
20

Coal Oil

O Years to achieve 5%

Natural gas Nuclear

B Years to achieve 25%
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Length of Formative Phases

steamt stamonsay | | I . ‘
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Fig. 1. Durations of formative phases for energy technologies are at a decadal scale
[4]. Mote: Ranges refer to alternative definitions for the start and end points of
formative phases, and so capture measurement uncertainties.
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Fig. 2. Diffusion speeds accelerate as technologies diffuse spatially. Motes; Bars
show durations of diffusion measured by cumulative total capacity installed, with
historical data fitted via a logistic growth curve and the diffusion duration expressed
as Atin years, ‘Core” is typically within the OECD; 'Rim’ is typically Asian countries;
‘Periphery’ is typically other world regions. For details and data, see; [42 3],



Conceptualizing energy transitions

(initial ‘core’ markets for each technology)}
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B REFINERIES

BCOAL POWER

B HNUCLEAR POWER

B HYDRO POWER
NATURAL GAS POWER

EAIND POWER

WIET AIRCRAFT
PASSENGER CARS

& MOTORCYCLES

® E-BIKES

WWASHING MACHINES
REFRIGERATORS
LAUKDRY DRYERS
COMPALCT FLUORESCENT BULBS

® CELLPHONES

& ALL STEAR ENGINES

Diffusion durations scale with market size. Notes: X-axis shows duration of diffusion (t) measured in time to grow from 10% to 90% of cumulative
total capacity; y-axis shows extent of diffusion normalized for growth in system size. All data are for ‘core’ innovator markets. Round symbols
denote end-use technologies; square technologies denote energy supply technologies; triangular symbol denotes general purpose technologies
(steam engines). Arrows show illustrative examples of system of systems (refineries describing the rise of multiple oil uses across all sectors,
cars describing the concurrent growth of passenger cars, roads, and suburbs, and steam engines are a proxy of the growth of all coal-related
technologies in the 19th century). Arrows also highlight examples of single technologies diffusing into existing systems substituting existing
technologies (nuclear power, compact fluorescent light bulbs).
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 We have seen at least five fast transitions in terms of energy

end-use and prime movers

 Examples of many rapid national-scale transitions in energy
supply also populate the historical record

Table 4
Owverview of rapid energy transitions,

Country Technology/fuel Market or sector Period of transition Number of years from  Approximate size (population
1 to 25% market share  affected in millions of people)
Sweden Energy-efficient ballasts Commercial buildings  1991-2000 7 23
China Improved cookstoves Rural households 1983-19498 g 5492
Indonesia Liguefied petrolenm gas stoves  Urban and rural 2007-2010 3 216
households
Brazil Flex-fuel vehicles Mew automobile sales  2004-2000 1 2
United States Air conditioning Urban and rural 1947 -1970 16 528
households
Kuwait Crude oil and electricity Matiomal energy supply  1946-1955 2 028
MNetherlands Matural gas Mational energy supply  1959-1971 10 115
France MNudlear electricity Electricity 1974-1982 11 728
Denmark Combined heat and power Electricity and heating  1976-1981 3 51
Canada Coal Electricity 2003-2014 11 13
{Ontario)?

4 The Ontario case study is the inverse, showing how guickly a province went from 25% coal supply to zero,



Years from 1 to 25% market share

Rethinking transitions
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20 = Bubble size is indicative
of population size affected
- Air conditioning Nuclear electricity Improved Phase-out of coal in
cookstoves in rural power generation
households
- Matural Gas
10 =
- y-efficient
ts in commercial
gs
CHP — Combined
Heat and Power
Crude oil & electricity
in energy systemo
0 i - Flex-fuel vehicles
|| ] || || ] | || ]
1940 1950 1960 1970 1980 1990 2000 2010

Figure designed by Gert Jan Kramer, used with permission
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Short communication

The pace of governed energy transitions: Agency, international @Cm,m
dynamics and the global Paris agreement accelerating
decarbonisation processes?

Florian Kern?*, Karoline S. Rogge "

» Historic energy transitions have not been consciously governed,
whereas today a wide variety of actors is engaged in active attempts to
govern the transition towards low carbon energy systems

« International innovation dynamics can work in favor of speeding up the
global low-carbon transition.

 The 2015 Paris agreement demonstrates a global commitment to move
towards a low carbon economy for the first time
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Rethinking transitions

ANordic Energy Technology
- Perspectives 2016

Cities, flexibility and pathways to carbon-neutrality

Fias International -
A nordcn | Engfgy Agency
Nordic Energy Research lﬁa mu;::uinnhle

Nordic Council of Ministers Together
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Rethinking transitions: electricity,
heat, and buildings

a. Top panel: Electricity generation a. Top panel: Buildings energy consumption, 2013 and 2050
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a. Top panel: by fuel source, 2010-2050
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b, Bottom panel: by transportation mode, 2050

250
20 = Hydrogen
2 2nd gen biofuels
150 W 15t gen biofuels
W Electricity
W CNG/LPG
100 M Residual fuel
M et fusl
M Diesel
50
W Gasoline
0

PLDVs Buses Freight trucks Rail Ajr Sea



Rethinking transitions: industrial emissions-~@§:ﬁ°§:3‘g;
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Fig. 11. Nordic Carbon Dicxide Emissions by Country, 2010-2050.
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CCS utilization by 2050:

50% B of cement plants

30% . of iron & steel,

chemical plants
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Tahle 3

Cumulative Nordic Investments for Decarbonization by Sector, 2016-2050.
Source: Modified from International Energy Agency and Nordic Energy Research, Nordic

Benjamin K. Sovacool ™"

 The total cost of the Nordic
transition is roughly $3.57 trillion

Energy Technology Perspectives 2016 (Paris: OECD, 2016). Assumes the Carbon Meutral ° I it
£y gy Persp requires an addaitiona

Scenario. . -

investment of only $333 billion

Sector s (Usb Billon) o Thijs js less than 1% of

Energy-related investments in buildings 326 CumUIanve GDP over the penOd

Industry 103 . . .

Transport: veliiles 1674 « If you monetize air pollution and

pramsport: Infi structre 1121 fuel savings, it tips the economic

‘ower: generation 197 . - .

Power: infrastructure 151 equation firmly in favour of the

Total 3572

transition
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The energy transition is already
happening?

Disruptive Trend

Residential PV solar
parity’

Annua! sales [GW]

PV plus battery grid
defection?

Electric vehicle
penetration®*

Gas-based
distributed
generation parity
with retail®
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penetration®’
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installation®™®
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Shifts in business models and value
creation alongside technology

Increasing technical innovation

New battery chemistries
New solar PV technologies

>

-
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Synergistic solutions increasing
the value of renewables

Solar PV + battery storage
IT and storage for peak shaving

E O®

Data and internet of things
increasing integration

Sensors
Predictive software
Demand response automation

Innovative business models
increasing customer bases

No up front costs
Funnel analysis
Value beyond energy

Ce I

Innovative financing reducing cost
of capital

Third-party financing
Green bonds
YieldCos




Concluding remarks @zﬁlﬁdw
 Whether an energy transition can occur quickly or
slowly can depend in great deal about how it is
defined, so always check sources, data,

assumptions etc.

e Causes are complex: WW?2 (France and Kuwait),
rural famine (China), 1970s oil crises (Denmark,
Brazil), demand (AC in USA)

e Future transitions could be driven by active
governance (phase-outs), scarcity, and demand
pressures, rather than supply, markets, or
abundance

 The past need not be prologue; history can be
Instructive but not necessarily predictive



PALGRAVE
HANDBOOKS

-

pB
LGRAVE HAY
' ’”‘-t-

Contact Information

Benjamin K. Sovacool, Ph.D
Professor of Energy Policy
University of Sussex
Jubilee Building, Room 367
Falmer, East Sussex, BN1 9SL
+44 1273 877128
B.Sovacool@sussex.ac.uk

/ ! Centre on
Innovation

\ and Energy

\ Demand

FACT AND FICTION [N

GLOBAL ENERGY POLICY

15 CONTENTIOUS QUESTIONS

Benjamin K. Sovacool, Marilyn A. Brown
and Scott V. Valentine

-



mailto:B.Sovacool@sussex.ac.uk

	Accelerating future energy transitions��Invited Presentation to the “Radical Innovation” Workshop of Energy Transition Week, NTNU, Trondheim, Norway, March 1, 2018�� �� 
	Conceptualizing energy transitions 
	Conceptualizing energy transitions 
	Conceptualizing energy transitions 
	Conceptualizing energy transitions 
	Conceptualizing energy transitions 
	Conceptualizing energy transitions 
	Conceptualizing energy transitions 
	Rethinking transitions
	Rethinking transitions
	Rethinking transitions
	Rethinking transitions
	Rethinking transitions: electricity, heat, and buildings
	Rethinking transitions: transport fuel
	Rethinking transitions: industrial emissions
	Rethinking transitions
	Rethinking transitions
	The energy transition is already happening?
	Slide Number 19
	Shifts in business models and value creation alongside technology 
	Concluding remarks 
	Contact Information 

