## **Analyzing the Effects of Shale Gas Using Using the World Gas Model**





TRONDHEIM, NORWAY

**NOVEMBER 7-8, 2017** 


#### **Co-presenters:**

m

Seksun Moryadee, Chulachomklao Royal Military Academy, Thailand

François Rehulka, EDF, Paris, France







A. JAMES CLARK SCHOOL OF ENGINEERING

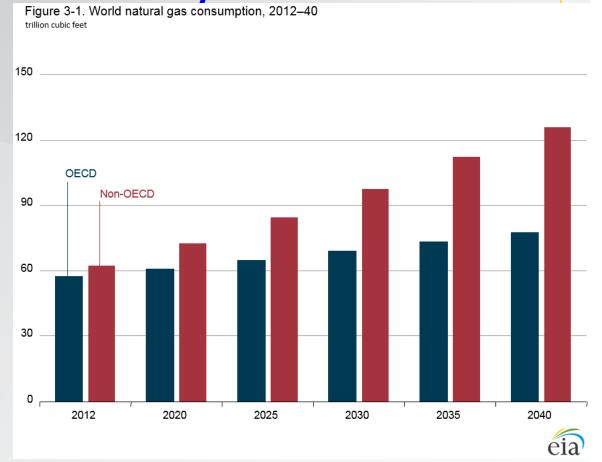
### **Outline**

- Brief Overview of International Natural Gas Markets
- 2. Shale Gas Effects
- 3. Representative Study
- 4. Challenges



# Natural Gas Consumption Projected to Rise Globally

- According to the Energy Information Administration (EIA) at the U.S. Dept. of Energy International Energy Outlook 2016 (IEO 2016), Reference Case
  - Consumption to increase 69% from 3398 billion cubic meters (BCM) in 2012 to 5748 BCM in 2040 (120 trillion cubic feet to 203 Tcf)
  - This is the largest increase in global primary energy consumption


Source: https://www.eia.gov/outlooks/ieo/nat\_gas.cfm

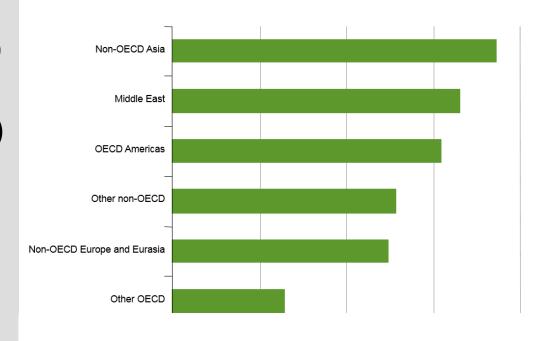


# Natural Gas Consumption Projected to Rise Globally

#### **EIA** reports

- Every IEO region sees an increase in natural gas consumption
- Consumpton outside the Organization for Economic Cooperation and Development (non-OECD) increasing more than twice as fast as in the OECD
- The strongest growth non-OECD Asia





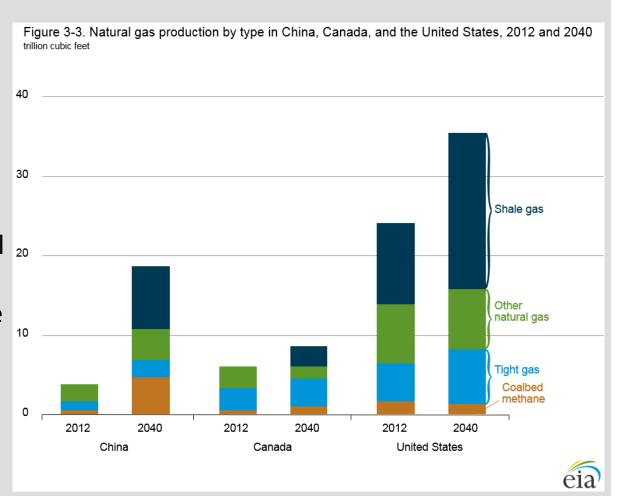

### Natural Gas Supply Projections

#### **EIA** reports

- Commensurate 69% increase in natural gas supplies globally
- Largest production increases from:
  - Non-OECD Asia (529 BCM)
  - Middle East (470 BCM)
  - OECD Americas (439 BCM)
  - China (425 BCM), shale resources
  - U.S. (320 BCM), shale resourcese
  - Russia (283 BCM), from Arctic & eastern regions

Figure 3-2. World increase in natural gas production by country grouping, 2012–40 trillion cubic feet

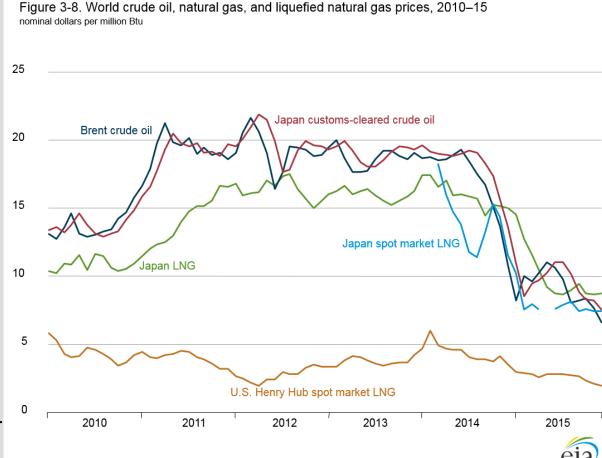





44% of overall increase in global gas production

## Natural Gas Supply Projections for: Tight Gas, Shale Gas, Coalbed Methane

#### **EIA** reports


- China, U.S., Canada large producers of these types of natural gas
- Horizontal drilling and
   hydraulic fracturing → nearly
   doubling of estimates for total
   U.S. technically recoverable
   natural gas resources over the
   past decade.
- Shale gas more than ½ U.S. production in IEO2016
   Reference Case
- Tight gas, shale gas, and coalbed methane resources in Canada and China about 80% of total production in 2040 in those countries.



### Liquefied Natural Gas (LNG) Trade

#### **EIA** reports

- World LNG trade more than doubles, from about 340 BCM in 2012 to 821 BCM in 2040
- Majority of liquefaction in Australia and North America (new projects)
- Decline of existing projects in North Africa and Southeast Asia (underutilized/shutting down) NG consumption higher value than exports
- Japan, China, and Singaporeare developing regional trading hubs for better price formation transparency



### **Natural Gas and Renewables**

- Many countries striving to reduce greenhouse gases in light of climate change issues
- Main renewables in many places: intermittent wind and solar (also biomass)
- May still need a fossil fuel back-up (at least in the "short-term")
- Natural gas much cleaner than coal and other hydrocarbons— thus the rising importance of this fuel



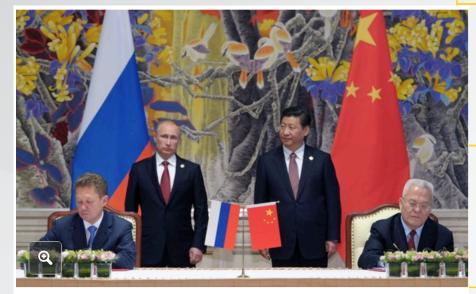
## Russia, Europe and Natural Gas Demand Insecurity: Looking West

- European demand/geopolitical insecurity for Gazprom and Russia
- The European Commission abuse of dominance in natural gas, charging higher prices in Bulgaria, Estonia, Latvia, Lithuania, Poland (countries with a large dependence on natural gas)
- Regulators: Gazprom is trying to partition
   Central and Eastern European gas markets
   by "reducing customer's ability to resell
   the gas to other countries".
- Siberian pipeline gas to European utilities down 20% in Q1 (compared with historical average) – LNG from Qatar and elsewhere cheaper including U.S. shale gas.

#### Gazprom Faces Effects of Politics on Its Bottom Line

By ANDREW E. KRAMER APRIL 22, 2015




The Gaz-System distribution station in Gustorzyn, Poland. Poland and some other European countries are largely dependent on Russian gas. Agencja Gazeta/Reuters

http://www.nytimes.com/2015/04/23/business/international/gazprom-faces-effects-of-politics-on-its-bottom-line.html?smprod=nytcore-iphone&smid=nytcore-iphone-share&\_r=0 A. JAMES CLARK

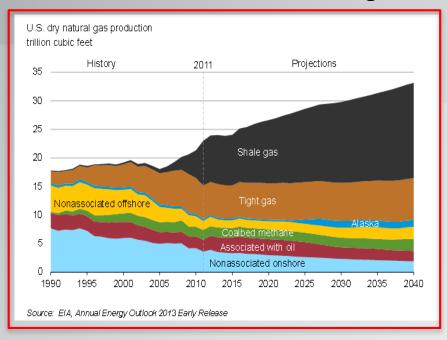
SCHOOL OF ENGINEERING

## Russia, China and Natural Gas Demand Insecurity: Looking East

- Gazprom made deals to supply gas to China for 30 years from Siberia, new pipelines, gas to flow starting in 2019, 38 BCM/year.
- Eventually China could get more Russian gas than Germany (largest customer at present)
- Gazprom -\$50 billion commitment to build a new pipeline to China that will take years to produce profits, Chinese financing is slow to happen
- Projected natural gas consumption in the PRC 300-350 bcm a year by 2020, and at a level around 500 bcm a year by 2030.



Vladimir V. Putin, second from left, stood next to President Xi Jinping of China at last May's signing of a gas deal in Shanghai. Pool photo by Alexey Druginyn

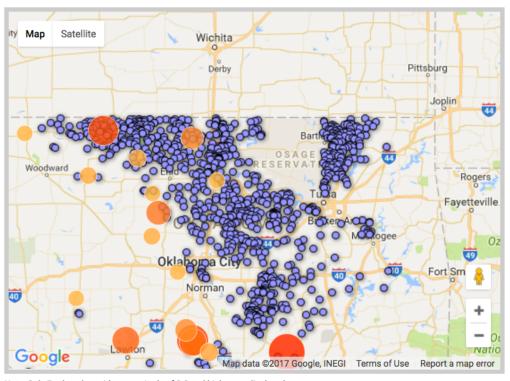



http://www.gazprom.com/press/news/2014/may/article191451/ http://www.gazpromexport.ru/en/partners/china/ http://www.chinadaily.com.cn/business/2017-03/16/content\_28581640.htm



### North American Gas Market Shale Gas Revolution

#### **U.S. Shale Gas Production Through 2040 (TCF)**




- The share of U.S. shale gas in the total production is increasing
- U.S. LNG exports rise to approximately 45 BCM (1.6 Tcf) in 2027
- Hydrofracking environmental issue considered by each U.S. State and EPA

### Earthquakes from Wells? 1980-1999

EARTHQUAKES IN OKLAHOMA

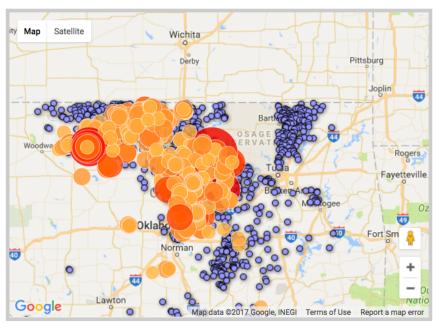
### **EARTHQUAKE MAP**



Note: Only Earthquakes with a magnitude of 3.0 and higher are displayed.

- Earthquakes Past 7 days
- Earthquakes 2012
- Arbuckle Waste Water Disposal Wells

- Earthquakes 2017 (YTD)
- Earthquakes 2011
- Earthquakes 2016
- Earthquakes 2010
- Earthquakes 2015
- Earthquakes 2000 through 2009
- Earthquakes 2014
- Earthquakes 1990 through 1999
- Earthquakes 2013
   Earthquakes 1980 through 1989

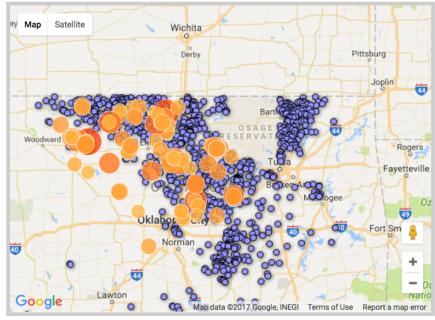

### Earthquakes from Wells?

2016

2017

EARTHQUAKES IN OKLAHOMA

### **EARTHQUAKE MAP**




Note: Only Earthquakes with a magnitude of 3.0 and higher are displayed.

Earthquakes - Past 7 days
Earthquakes - 2017 (YTD)
Earthquakes - 2016
Earthquakes - 2015
Earthquakes - 2015
Earthquakes - 2016
Earthquakes - 2015
Earthquakes - 2014
Earthquakes - 1990 through 1999
Earthquakes - 2013
Earthquakes - 1980 through 1989

EARTHQUAKES IN OKLAHOMA

### **EARTHQUAKE MAP**



Note: Only Earthquakes with a magnitude of 3.0 and higher are displayed.

- Earthquakes Past 7 days
  Earthquakes 2012
  Earthquakes 2017 (YTD)
  Earthquakes 2016
  Earthquakes 2010
  Earthquakes 2010
  Earthquakes 2000 throu
- Earthquakes 2015 Earthquakes 2000 through 2009
  Earthquakes 2014 Earthquakes 1990 through 1999
  Earthquakes 2013 Earthquakes 1980 through 1989

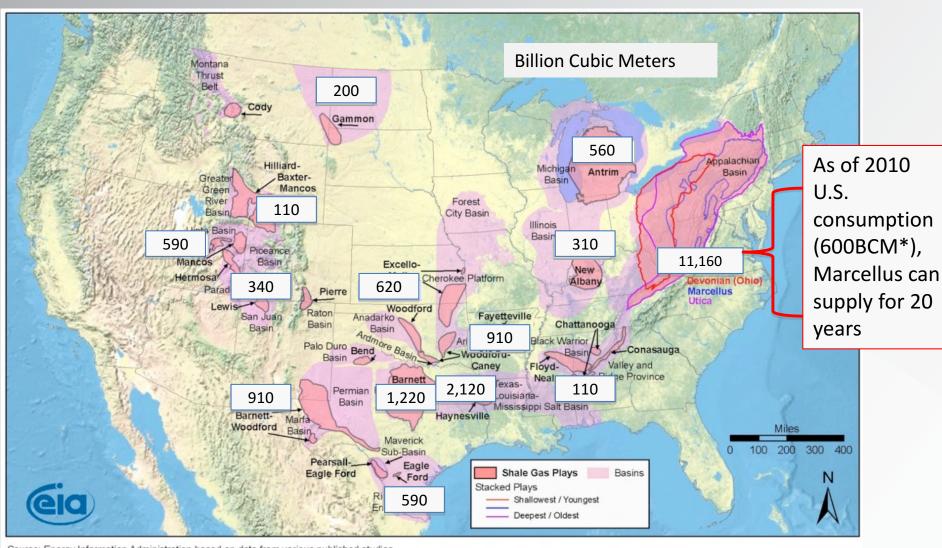


Arbuckle Waste Water Disposal Wells

Arbuckle Waste Water Disposal Wells

## Earthquakes from Wells? Summary

- "The Oklahoma Geological Survey has determined that the majority of recent earthquakes in central and north-central Oklahoma are very likely triggered by the injection of produced water in disposal wells."
- Magnitude 3+ Earthquakes
  - 2016: 623
  - 2015: 903
  - 2014: 579
  - 2013: 110
  - 2012: 35
  - 2011: 67
  - 2010:41

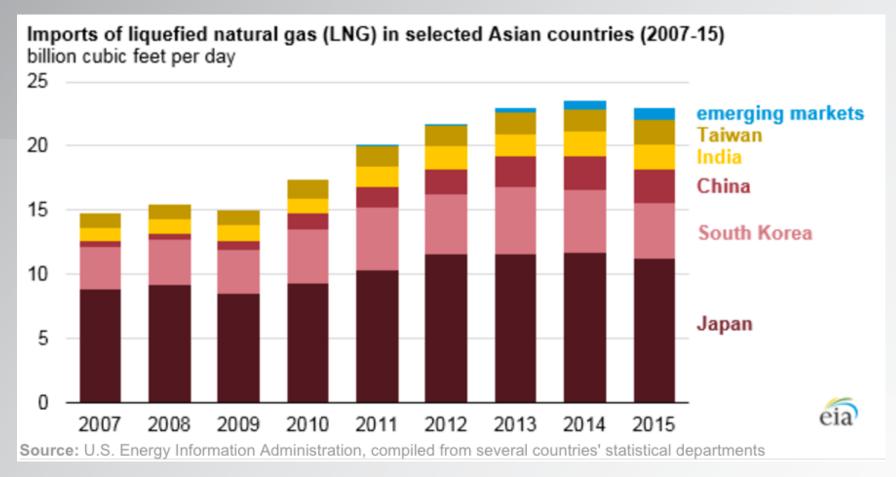



# U.S. Environmental Protection Agency (EPA) Major Findings on Hydrofracking

- EPA found scientific evidence that hydrofracturing can impact drinking water resources under some circumstances for example:
- "Water withdrawals for hydraulic fracturing in times or areas of low water availability, particularly in areas with limited or declining groundwater resources"
- "Spills during the handling of hydraulic fracturing fluids and chemicals or produced water that result in large volumes or high concentrations of chemicals reaching groundwater resources"
- "Injection of hydraulic fracturing fluids into wells with inadequate mechanical integrity, allowing gases or liquids to move to groundwater resources", etc.
- However, some gaps in data and uncertainties limited EPA's ability to fully assess the potential impacts on drinking water resources locally and nationally.



### US Shale Gas Plays, Lower 48 States

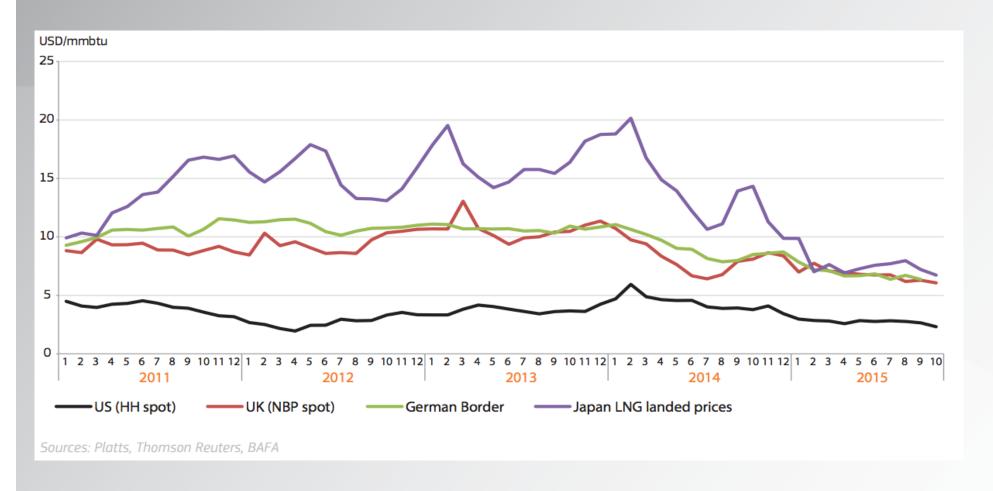



Source: Energy Information Administration based on data from various published studies Updated: May 28, 2009

\*BP Statistical Review, 2011



#### **Overview of LNG Markets**




Source:https://www.eia.gov/todayinenergy/detail.php?id=27652

- Japan, South Korea, China imported more than half of all global LNG in 2015
- These three countries combined for 18.2
   Bcf/day (515 million cubic meters) in 2015



## International Comparison of Wholesale Gas Prices

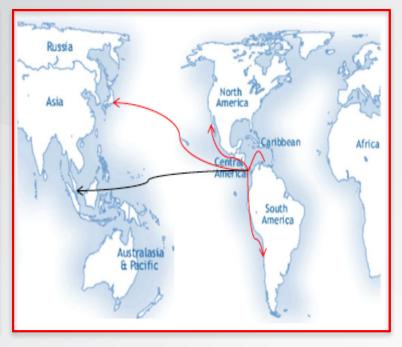


Source: https://ec.europa.eu/energy/sites/ener/files/documents/quarterly\_report\_on\_european\_gas\_markets\_q3\_2015.pdf



## U.S. LNG Export Status as of March 1, 2017 Total of All Applications Received

|                     | Total (per day)                  | Total (per year)               |
|---------------------|----------------------------------|--------------------------------|
| FTA application     | 54.72 Bcf/day or<br>1.54 BCM/day | 19.97 Tcf/year or 565 BCM/year |
| Non-FTA application | 51.13 Bcf/day or 1.45 BCM/day    | 18.74 Tcf/year or 530 BCM/year |


FTA with the U.S. requires national treatment for trade in natural gas, including Australia, Bahrain, Canada, Chile, Colombia, Dominican Republic, El Salvador, Guatemala, Honduras, Jordan, Mexico, Morocco, Nicaragua, Oman, Peru, Republic of Korea and Singapore

Source: https://energy.gov/sites/prod/files/2017/03/f34/Summary%20of%20LNG%20Export%20Applications.pdf

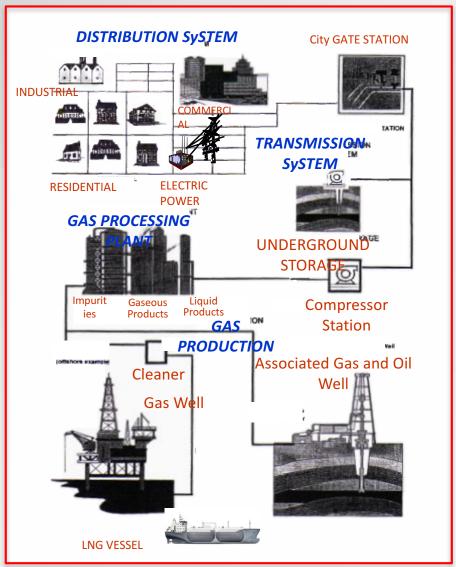


## Much Shorter Distances for U.S. Gulf of Mexico LNG Exports to Asia via the Panama Canal

| Origin         | Via<br>Panama | Via<br>Suez | Around Cap<br>Horn | Around Good<br>Hope | Destination |
|----------------|---------------|-------------|--------------------|---------------------|-------------|
|                | 3,733         | 21,637      | 9,783              | 19,713              | Mexico West |
| Gulf of Mexico | 4,449         | 19,723      | 13,476             | 20,266              | Chile       |
| Guil of Mexico | 9,756         | 14,449      | 17,060             | 15,697              | Japan       |
|                | 12,147        | 11,910      | 16,900             | 13,157              | Singapore   |
|                | 3,331         | 20,272      | 7,643              | 17,573              | Mexico West |
| Trinidad       | 4,048         | 18,358      | 11,336             | 18,126              | Chile       |
| Timuau         | 9,355         | 13,054      | 14,920             | 13,557              | Japan       |
|                | 11,746        | 10,545      | 14,761             | 11,027              | Singapore   |
|                | 7,471         | 19,474      | 10,801             | 19,601              | Mexico West |
| Monuov         | 8,188         | 17,559      | 14,493             | 20,155              | Chile       |
| Norway         | 13,494        | 12,285      | 18,078             | 15,585              | Japan       |
|                | 15,886        | 9,746       | 17,918             | 13,046              | Singapore   |



#### Popils,2011


- Massive time saving on voyages to Japan, South Korea, Taiwan and China
- Avoid Cape Horn during winter season for potential deliveries to western coast of North and Central America
- Panama Canal expansion (ongoing) to be able to handle more and larger ships
   A. JAMES CLARK

SCHOOL OF ENGINEERING

### The World Gas Model

#### Natural gas supply chain

- Production/Consumption Nodes: 41 (Groups of countries, countries, regions)
- Covers over 95% of worldwide consumption
- 10 periods: 2005-2050, calibration year 2010
- Typical decision variables
  - Operating levels (e.g., production, storage injection)
  - Investment levels (e.g., pipeline, liquefaction capacity)
- Other
  - Market power aspects (traders )
  - LNG contracts database
  - Seasonality of demand: low and high demand
  - Environmental policy consideration: Carbon costs for supply chains
- Computational aspects
  - Large-scale complementarity problem (KKT optimality conditions for all players + market-clearing conditions)
  - ~78,000 vars. Solves in ~240 mins (8GB, 3.0 GHz)
  - MCPs are examples of non-convex problems (via the complementarity constraints)
  - Improved WGM, S. Moryadee Ph.D. thesis 2015





## The World Gas Model (WGM) WGM 2012 vs. WGM 2014

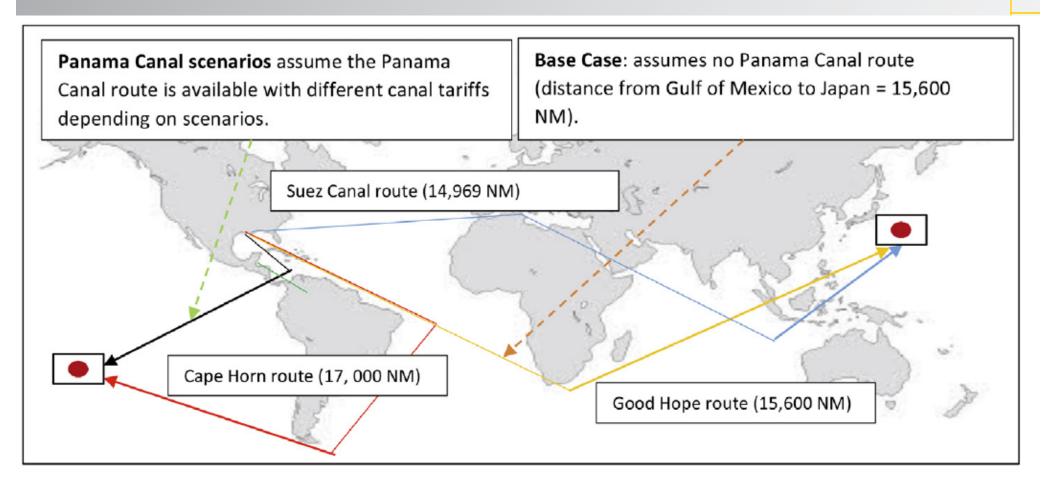
(S. Moryadee, S.A. Gabriel, 2015)

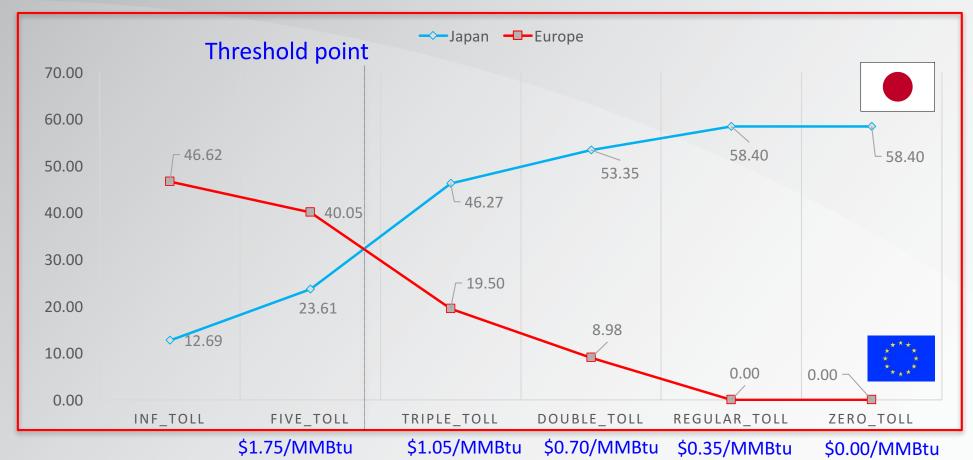
|                              | WGM 2012         | WGM 2014          |  |
|------------------------------|------------------|-------------------|--|
| Market players with separate | Producers        | Producers         |  |
| optimization problems        | Traders          | Traders           |  |
|                              | Pipeline         | Pipeline operator |  |
|                              | operator         | Storage operator  |  |
|                              | Storage operator | Marketers         |  |
|                              | Marketers        | Liquefier         |  |
|                              |                  | Regasifiers       |  |
|                              |                  | LNG shipping      |  |
|                              |                  | operator          |  |
|                              |                  | Canal operators   |  |
| LNG shipping cost            | \$8 kcm/1000     | Endogenous        |  |
|                              | nautical miles   |                   |  |
| Investment for producers     | Exogenous        | Endogenous        |  |
| Investment for LNG tanker    | No               | Yes               |  |
| Limitation on LNG shipping   | No limit         | Constraint on LNG |  |
|                              |                  | Shipping operator |  |
| INC                          | Oultril manuta   | Elevible ve to 2  |  |

| LNG routes          | Only1 route   | Flexible up to 3 |  |
|---------------------|---------------|------------------|--|
|                     | origin-       | routes           |  |
|                     | destination   |                  |  |
| Number of variables | ~ 60,000 vars | ~ 110,000 vars   |  |

RK JNG

#### The World Gas Model 2012 Version





Fig. 1. The difference between Panama Canal scenarios and the calibration Base Case.

S. Moryadee, S.A. Gabriel, F. Rehulka, F. 2014. "The Influence of the Panama Canal on Global Gas Trade," Journal of Natural Gas Science & Engineering, 20, 161-174.

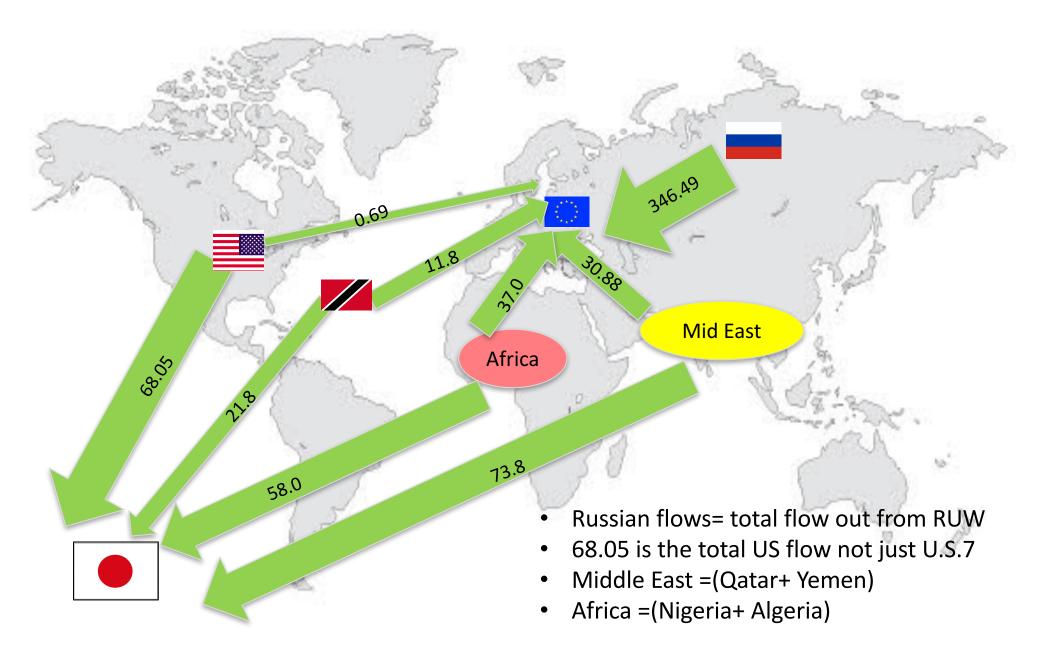
A. JAMES CLARK SCHOOL OF ENGINEERING

# Impacts of Canal Tolls on Flows from U.S. Gulf of Mexico (US7 Node)

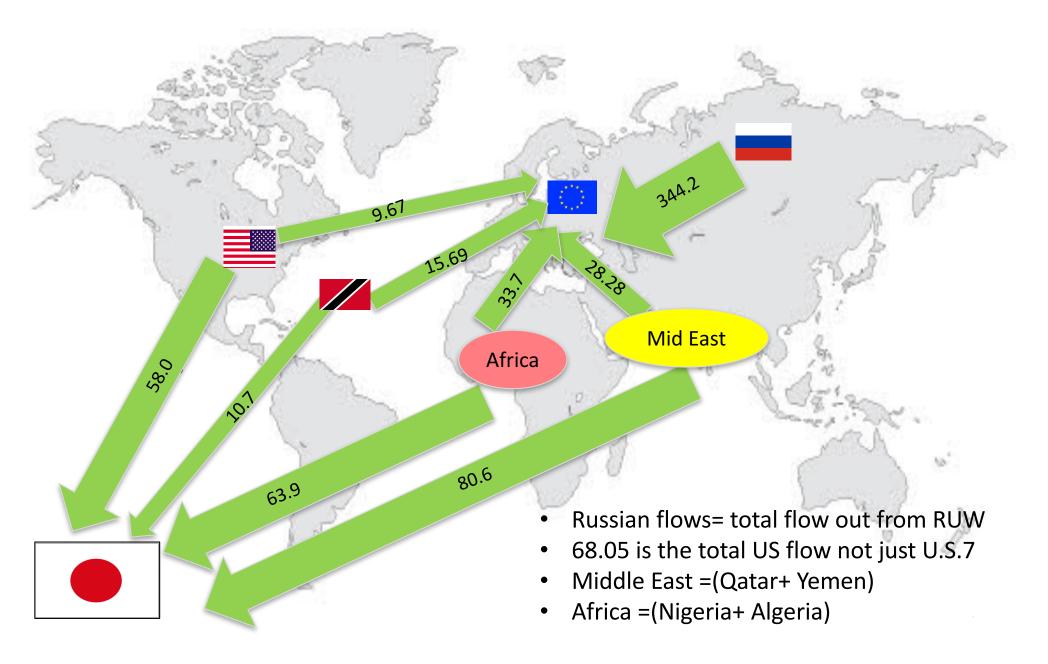
FLOWS FROM US7 TO EUROPE/ ASIA IN BCM/Y FOR 2035



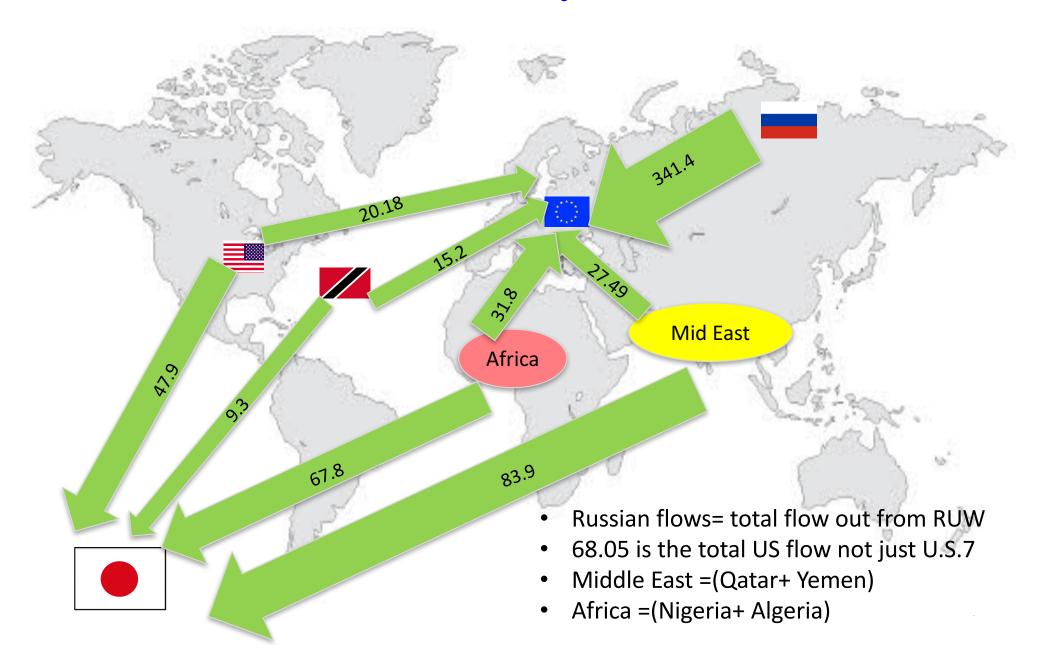
Increasing toll


A. JAMES CLARK
SCHOOL OF ENGINEERING

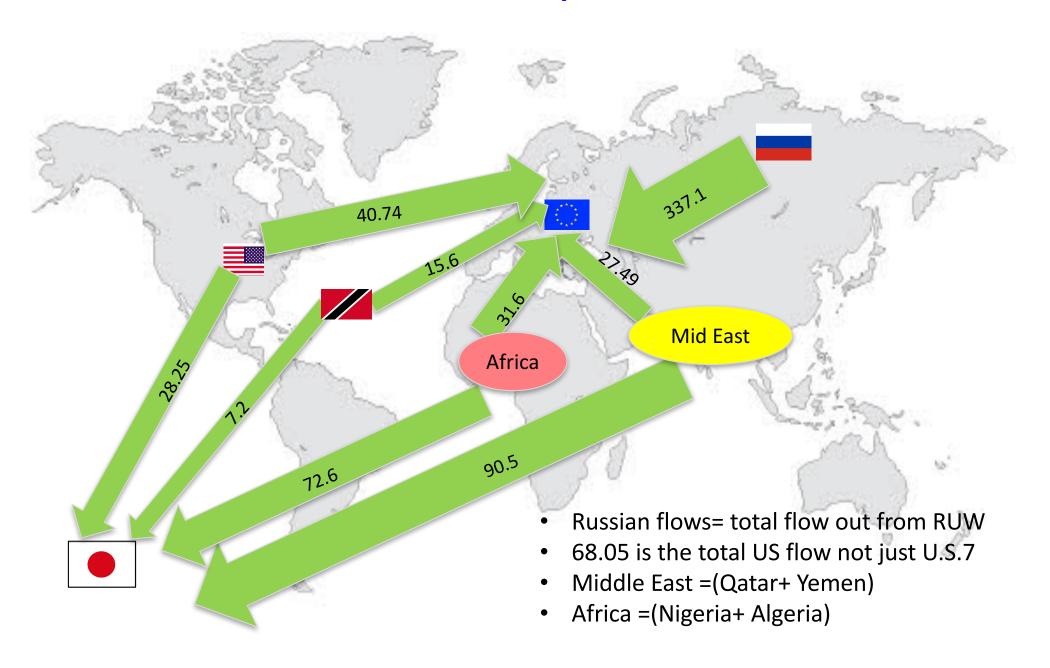
### **EDF-WGM Sensitivity Analysis Scenarios**


| Scenarios     | Assumptions                                                       |
|---------------|-------------------------------------------------------------------|
| Zero_Toll     | "Zero Tariff" :tariff is \$0/trip or \$0.00/MMBtu                 |
| Regular_Toll  | "Regular Tariff" : Canal Tariff tariff = \$/trip or \$0.35 /MMBtu |
| Double_Toll   | "Double Tariff" :Canal tariff=Regular tariff X 2 = \$0.70 /MMBtu  |
| Triple_Toll   | "Triple Tariff" :Canal tariff=Regular tariff X 3 = \$1.05 /MMBtu  |
| Fivefold_Toll | "Fivefold Tariff" :Canal tariff=Regular tariff X 5= \$1.75 /MMBtu |
| Inf_Toll      | "Infinite Tariff" : Canal tariff= large number \$9,999/kcm        |




## Dynamics of Flows: Regular Tariff Scenario, Flows in Bcm/y for 2035




# Dynamics of Flows: Double Tariff Scenario, Flows in Bcm/y for 2035



# Dynamics of Flows: Triple Tariff Scenario, Flows in Bcm/y for 2035



## Dynamics of Flows: Five-fold Tariff Scenario, Flows in Bcm/y for 2035



#### **Prices**

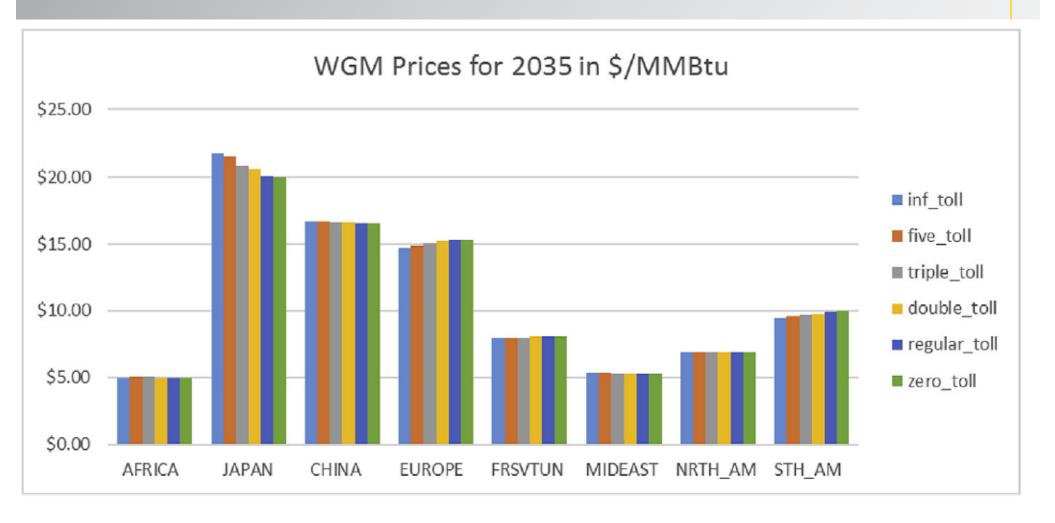



Fig. 6. WGM prices for 2035 in \$/MMBtu.



#### Challenges (Geopolitical, Environmental, Food-Energy-Water)

Given the move towards more intermittent renewables such as wind, solar with a strong reliance on relatively clean natural gas as a thermal back-up:

- 1. How much will importance will shale gas have in the coming years given European/Asian imports and supply diversity goals & U.S. export goals?
- 2. How will the environmental negative externalities (e.g., induced earthquakes, clean water) be overcome in a socially and economically beneficial way?
- 3. Should natural gas from other, non-traditional less disruptive sources also be considered? (e.g., gas from wastewater, waste in general)
- 4. If gas from wastewater or other waste is used, what effects on fertilizer production and ultimately food production will result?
- 5. If more shale gas is used with the very large water needs, how will this affect food production.