The Development of an

Autonomous Shuttle Ferry in Trondheim

Associate Professor Egil Eide,

Low environmental footprint and cheaper than bridge

Kunnskap for en bedre verden

Department of Electronics Systems
Department of Engineering Cybernetics
Department of Marine Technology

Concept

- "On-demand ferry" push the button for the ferry to come
- Traveling time: 1 minute → low latency
- Passengers: 12 persons
- Electrical propulsion, Automatic charging of batteries
- Navigation: High-precision GNSS (cm accuracy) plus backup system
- Anti-collision system
 - NTNU

Urban ferries in Norway

"Beffen"
Bergen,
Norway

Autonomous shuttle buses

- a key component for Smart City Urban Mobility

Urban waterways: The next generation of autonomous transportation

"... autonomous ferries will be able to replace bridges and fossile-fuelled ferries in a clean and cost-effective way, increasing quality of life in urban areas and enabling development of areas previously not connected to the cities due to lack of infrastructure." (Reaktor, Finland)

Urban City Development: Riverside Project, Gothenburg

Time schedule

Phase 1 (2016): Concept study, student projects. **Webcamera and radar** to register boat traffic i the harbour. Dynamic Position system to be tested onboard **ReVolt** from DNV GL in Trondheim Harbour.

Phase 2 (2017/2018): Autonomous **pilot ferry** for concept testing and to study behaviour of the other boat traffic.

Phase 3 (2018/2019): Full scale ferry certified for passengers.

Phase 1: Monitoring boat traffic in the harbour

Phase 2: Prototype Ferry (development platform)

- Funded by NTNU and AMOS
- Aluminum hull with scale 1:2 (5 m long)
- Testing of propulsion system, batteries and charging system
- Development of navigation system, DP system and automatic docking
- Development of anti-collision system and safe remote control HMI

First technical sea trials. 11 Nov 2017

- Batteries, thrusters, OBC and Remote control installed and tested
- Navigation sensors (RTK GNSS and IMU) installed
- Dynamic Position software installed and tested
- Development of automatic docking summer 2018
- Testing of anti-collision sensors in Trondheim Harbour fall 2018

Phase 3: Full Scale Ferry

- 12 Passengers
- Size: LOA: 8-10m x Beam: 3.5m
- Automatic battery charging (induction)
- Propulsion: 4 x 4kW azimuth thrusters
- RTK GNSS-compass + Radar + Camera + LIDAR system
- AIS and 2-way wireless communication including video

Anti Collision Sensors

Anti Collision Sensors

Anti Collision Sensors

Success Criteria

Safety

- Risk assessment
- Automatic registration of passengers
- Robust anti-collision system
- Redundant navigation systems
- Monitoring and remote control

Reliability

- Easy to use
- Work all around the year
- Efficient transportation low latency
- Robust design low probability of errors
- Minimized need for maintenance

Autoferry Project (NTNU Digital Transformation)

- 19 researchers from three faculties and all three NTNU campuses: Trondheim, Ålesund and Gjøvik
- Six new PhD positions
 (+ 3 already started)
- External project partners
 Trondheim Harbour, DNV
 GL, Maritime Robotics and
 Kongsberg Seatex
- International collaborators from all over the world

From Urban Ferries to Coastal Ferries

Long Term Goals

- Develop an integrated solution, ensuring a safe and robust urban transportation system
- Develop solutions for efficient operations and maintenance, logistics, customer service and support
- Build trust, confidence and social acceptance for the new technologies
- Build a roadmap to commercially viable and scalable solutions

