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All biases, especially in CS




What is lacking in the
available citizen
science data? What
can be done to collect
better data?




Paper Il

|dentification is fundamental
Al is helping more and more

Data are taxonomically biased

Maximizing citizen scientists’

contribution to automated
species recognition

Wouter Koch, Laurens Hogeweg, Erlend B.
Nilsen & Anders G. Finstad

Scientific Reports, 2022:
doi:10.1038/541598-022-11257-X



Paper I Maximizing citizen scientists’
contribution to automated
species recognition

|dentification is fundamental Wouter Koch, Laurens Hogeweg, Erlend B.

: : Nilsen & Anders G. Finstad
Al is helping more and more

. . Scientific Reports, 2022:
Data are taxonomically biased  goi:10.1038/541598-022-11257-X

How does that affect image
data?

Which images would help Al
models the most?



Taxonomic bias

Known issue, e.g. Troudet et al.

We tested and confirm this
within Norwegian Citizen
Science image data

Selection of 12 taxonomic orders
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Training models

of adding images per taxon

Randomly select 17 adjacent species

Goal: find the Value of Information W& . m

For every selected species, divide images for model training
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Training models
Randomly select 17 adjacent species

Goal: find the Value of Information W& . m

Of addmg |mage3 per taxon For every selected species, divide images for model training
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Training models

Goal: find the Value of Information
of adding images per taxon

Take 17 species for one order

Train on 200, 150 ... 12 images per
species (25% reduction)

Randomly select 17 adjacent species

Test

Train

Validation

(20)

Model "200"

Model "150"

-25%

* minimum of 20 images
for performance tests of all model sizes

-25%

8 more models
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Value of Information

1.0

Gives performance curves over  os
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Value of Information

Gives performance curves over 10°
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Get the slope of the fitted curves
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Value of Information

10°
Gives performance curves over 10°
Images per species
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Value of Information

Gives performance curves over
Images per species

Get the slope of the fitted curves

Look up the Value of Information at
the current amount
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Value of Information

Gives performance curves over
iImages per species

Get the slope of the fitted curves

Look up the Value of Information at
the current amount

Value not just in most scarce

A3xyF s frAAY
op

Opportunity to focus resources
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Paper lll

Taxonomic bias is equated to
popularity

Recognizability bias in
citizen science photographs

Wouter Koch, Laurens Hogeweg, Erlend B.

Nilsen, Robert B. O’'Hara & Anders G.
Finstad

Preprint on bioRyiv:
doi:10.1101/2022.06.25.497604



Paper lll

Taxonomic bias is equated to
popularity

What about recognizability?

IS Al biased in the same way as
humans?

What does that mean for training
Al models?

Recognizability bias in
citizen science photographs

Wouter Koch, Laurens Hogeweg, Erlend B.

Nilsen, Robert B. O’'Hara & Anders G.
Finstad

Preprint on bioRyiv:
doi:10.1101/2022.06.25.497604



Performance vs
popularity
Same 12 orders as in paper |l

Deep dive into birds: most prevalent
and good standardized trait data

Train Al models with 200 images
per species: model does not “know”
which are reported more
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Same 12 orders as in paper |l
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Still, model does better on more
popular species. Why?



Are the pictures
better?

Close by or better zoom?

Fewer other species?




I Label Studio = Projects / Stripegds / Labeling Instructions Settings

Are the pictures
better?

Close by or better zoom?
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| Label Studio = Projects / Rodhalsgds / Labeling Instructions Settings
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| Label Studio = Projects / Rodhalsgds / Labeling Instructions Settings
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| Label Studio = Projects / Radhalsgds / Labeling Instructions Settings
. image | 230870 | () wouterkoch 2idct v moec
Are the pictures
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Close by or better zoom? U
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Is it the kind of bird?

Larger birds, different habitat,
migratory, other behavior?




Is it the kind of bird?

Larger birds, different habitat,
migratory, other behavior?

None of these correlate with the
Al model performance




Recognizability

The Al model finds some species
easier to recognize

F.)

People do too, and report more
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Recognizability

The Al model finds some species
easier to recognize

People do too, and report more

Same pattern for other orders
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Recognizability

The Al model finds some species
easier to recognize

People do too, and report more
Same pattern for other orders

Increased data likely of easier
species
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Final thoughts

Citizen science = valuable data +
engagement

We need to cope with bias and
other issues in citizen science

But there is more we can do than
simply accepting the data "as is’
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