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Autonomous urban passenger ferries

Can substitute bridges
and staffed ferries.

= Cheaper and more
flexible.




Situational awareness for autonomous ferries

« Determine route

== * Avoid collisions with:
""" - land

= - other vessels!

» Requires:
- Object detection
- Object tracking

- Collision avoidance
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Avoid collision: Safety vs Efficiency

Improve situational
M= \ == awareness to increase

Loa O both!
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Efficiency
+ GetfromAtoB as
quickly as possible

Safety: slow
* Avait information
* Limit crash severity
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Topics:

Situational awareness and

collision avoidance
For NTNU’s autonomous ferry
prototype
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Collision avoidance
using cameras

» 5 frames per second, 6 cameras

« Convolutional neural network
detects objects as bounding boxes

» Decides whether to STOP or GO
depending on whether there is an
object in the path
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0 Results

* First time maritime collision avoidance has been done with
cameras

« Combines georeferencing with clustering-based multi-
camera fusion

« Performance exceeded a lidar benchmark across multiple
performance measures

d. K. Helgesen, A. Stahl and E. F. Brekke, "Maritime Tracking With Georeferenced Multi-Camera
Fusion," in IEEE Access, vol. 11, pp. 30340-30359, 2023, doi: 10.1109/ACCESS.2023.3261556.
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Research areas

Sensor fusion
Combining information according to
performance at different ranges
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Sensors

« Radar
* |nfrared

« Lidar



RADAR (0.8 Hz) LiDAR (10 Hz)

Reliable Precise
Long range: (little noise)
(kms) Low range:
(150 m)
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Challenges with tracking objects

* Missed detection: might not detect all objects in
all frames

* Clutter / false alarms: might give unwanted
detections

* Association uncertainty: no measurement tag or
feature that is reliable between frames.

» >Filtering needed
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Challenges with different sensors

 Different properties
— information rates
— Probability of object detection vs erroneous measurements
— spatial precision

« Wrong model of a weakness might diminish another
sensors strength
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a Result: Detection probability per range
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@. K. Helgesen, K. Vasstein, E. F. Brekke, and A. Stahl, “Heterogeneous multi-sensor tracking for an autonomous surface vehicle in a littoral
envi- ronment,” Ocean Engineering, vol. 252, p. 111168, 2022
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Research areas

Object discovery
Reducing the number of hypotheses to
consider
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Problem of discovering new objects.

 However unlikely, every measurement could be a new
object > Many potential objects

* Many potential objects makes associating measurements
demanding

 Tradeoff:

Efficient discovery vs real-time computational feasibility
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Problem: Data association complexity

 1-100 frames / second
« N potential objects (1 to 200) and M measurements (0 to 20)
« Number of asssociation events in a single frame:
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Linear Multitarget on subset of objects (LMS)

 Removes low probability objects from the joint data association problem:
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* More potential objects with low probability now less demanding
» Keeping track of more potentialities gives faster discovery
* Less surprises
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e Results: Comparison

« Max relative error in calculated probability for potential objects being real

« Simulation scenario: 3 objects starts appart, get into close proximity, and move
appart again.

« Our approach has low error, and performance is unaffected by the proximity.

| Tracks believed to be real Tracks believed to be false
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L.-C. Tokle and E. F. Brekke, "The linear multitarget IPDA and its application on only a subset of the tracks."
Proc. 2023 26" International conference on Information Fusion (FUSION).
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Research areas

0 As good as it gets?
Further improve efficiency
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As good as it gets?

« We want to merge two approaches
1. Keep the K best hypotheses (precise, but might miss)

2. Average over association hypotheses (currently used, less
precise)

* Require multi frame marginal probabilities

— Enumerate events
— Event count in multi frame is the product of the single frames

« Approximate probabilities with message passing?
— Loopy belief propagation (LBP).

®@NTNU
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« Usually very small error

« Sometimes too large err

« Worst case run time (1000x faster)
« Exact: 146s
« LBP: 0.14s than exact

* Average run time (200x faster)
 Exact: 2.17s

-102 « LBP:0.01

« Real-time possible with optimized
implementation

]
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Exact marginals
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O. A. Severinsen, L.-C. N. Tokle and E. F. Brekke, "Belief propagation for marginal probabilities in multiple
hypothesis tracking." Proc. 2023 26" International conference on Information Fusion (FUSION).
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Ongoing work

* More in depth testing of algorithms

* Track merging to reduce number of tracks while keeping
information

» Direct tracking of image features for increased precision.
 In depth study of the trafic patterns in the canal
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Thank youl!




