BRU21: Research and Innovation Program in Digital and Automation Solutions for Oil and Gas Industry

Prof. Alexey Pavlov – BRU21 program manager
BRU21 origin

Fact finding meetings with the industry & authorities: 2016-2017

- What are the major challenges for the O&G industry?
- What are “break-through technologies” for oil prices at 30 $?
- How can NTNU contribute to deliver future technologies & education in O&G?

BRU21 Report – NTNU Strategy for Oil & Gas www.ntnu.edu/bru21

NTNU Strategy for Oil and Gas
What are the major challenges for the O&G industry on the Norwegian Continental Shelf in the future and the contribution from academia for solutions

NTNU Norwegian University of Science and Technology
BRU21 vision
Enable higher efficiency, safety and reduced environmental footprint of oil and gas production through digital and automation technologies

+ support the industry transition to sustainable energy future

BRU21 mission
Mobilize multidisciplinary expertise across NTNU and, in cooperation with industrial partners, produce research results for novel technological and organizational solutions

BRU21 goal
Deliver new knowledge, technologies, innovations and multidisciplinary specialists for the digital transformation of the Oil and Gas industry and for the Norwegian society
BRU21: Industry – NTNU collaboration: 39 (+2) projects

Industrial partners

- Lundin Norway 4
- AkerBP 4
- GASSCO 1
- TechnipFMC 2
- BR 1
- NEPTUNE ENERGY 2
- OILJEDIREKTORATET 2

NTNU 14

Collaboration
Education
Innovation

Industry use cases

- Field development and economics
- Drilling and well
- Exploration efficiency
- Reservoir management, Production optimization
- New business and operational models
- Operations, maintenance, safety & security

Operations, maintenance, safety & security

Innovation

Education

Collaboration

Industry use cases

Exploration efficiency

New business and operational models

Reservoir management, Production optimization

Operations, maintenance, safety & security

Industry partners

- OLJEDIREKTORATET 2
- wintershall dea 2
- equinor 5

Knowledge for a better world
<table>
<thead>
<tr>
<th>BRU21 project matrix: 39 (+2) projects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drilling and Well</td>
</tr>
<tr>
<td>Safe drilling in karstified carbonates</td>
</tr>
<tr>
<td>Intelligent data analytics for offshore well integrity and life cycle management</td>
</tr>
<tr>
<td>Automatic real-time surveillance of drill-string vibrations</td>
</tr>
<tr>
<td>Digitalization/automation of life-cycle well integrity</td>
</tr>
<tr>
<td>Drilling data analytics</td>
</tr>
<tr>
<td>Real-time fault and symptom detection in drilling operation with wired pipe</td>
</tr>
<tr>
<td>Reservoir management and Production optimization</td>
</tr>
<tr>
<td>A hybrid data-driven and mechanistic model for production optimization in the oil and gas industry</td>
</tr>
<tr>
<td>Production optimization strategies for offshore production systems with water processing constraints</td>
</tr>
<tr>
<td>Improved technology for production optimization, with focus on gas lift allocation</td>
</tr>
<tr>
<td>Assisted history matching for petroleum reservoirs</td>
</tr>
<tr>
<td>Assisted history matching, reservoir model update and optimization</td>
</tr>
<tr>
<td>Operations, Maintenance, Safety and Security</td>
</tr>
<tr>
<td>Maintenance in remote operations</td>
</tr>
<tr>
<td>Predictive maintenance</td>
</tr>
<tr>
<td>Predictive Maintenance and Remaining Useful Lifetime</td>
</tr>
<tr>
<td>Risk-based maintenance</td>
</tr>
<tr>
<td>Industry 4.0 and smart predictive maintenance</td>
</tr>
<tr>
<td>New business and operational models</td>
</tr>
<tr>
<td>Digital relations and new business models</td>
</tr>
<tr>
<td>Collaboration and digital tools in early stage design of offshore facilities</td>
</tr>
<tr>
<td>From idea to discovery: information sharing and cooperation in the exploration value chain</td>
</tr>
<tr>
<td>Remote operations and future operating models</td>
</tr>
<tr>
<td>Exploration efficiency</td>
</tr>
<tr>
<td>Does well data quality affect machine learning performance?</td>
</tr>
<tr>
<td>Automated Seismic Reconstruction of Missing Section</td>
</tr>
<tr>
<td>Automated facies classification through applying machine-learning to pre-stack seismic data</td>
</tr>
<tr>
<td>Automated lithology classification of whole core CT scans</td>
</tr>
<tr>
<td>Machine learning-based generic well log depth matching</td>
</tr>
<tr>
<td>Field development and economics</td>
</tr>
<tr>
<td>Improved planning methods for more energy efficient and environmentally friendly fields in the Barents Sea</td>
</tr>
<tr>
<td>Cost effective development of (small) discoveries on the NCS</td>
</tr>
<tr>
<td>Automated methodologies for decision support in field development</td>
</tr>
<tr>
<td>Optimizing the operation of natural gas infrastructure</td>
</tr>
<tr>
<td>Real options-based valuation for environmentally friendly O&G production</td>
</tr>
<tr>
<td>AI for safety-critical remote operations</td>
</tr>
<tr>
<td>Design, operation and maintenance of offshore energy hubs</td>
</tr>
<tr>
<td>Safety and security in design and operation of ICS systems</td>
</tr>
<tr>
<td>Detection and localization of subsea leakages</td>
</tr>
<tr>
<td>Integrated Reservoir Tool/FieldOpt</td>
</tr>
<tr>
<td>Data-driven reservoir modelling</td>
</tr>
<tr>
<td>Integrated Reservoir Tool/FieldOpt</td>
</tr>
<tr>
<td>Machine learning-based production optimization</td>
</tr>
<tr>
<td>Operations, Maintenance, Safety and Security</td>
</tr>
<tr>
<td>Maintenance in remote operations</td>
</tr>
<tr>
<td>Predictive maintenance</td>
</tr>
<tr>
<td>Predictive Maintenance and Remaining Useful Lifetime</td>
</tr>
<tr>
<td>Risk-based maintenance</td>
</tr>
<tr>
<td>Industry 4.0 and smart predictive maintenance</td>
</tr>
<tr>
<td>New business and operational models</td>
</tr>
<tr>
<td>Digital relations and new business models</td>
</tr>
<tr>
<td>Collaboration and digital tools in early stage design of offshore facilities</td>
</tr>
<tr>
<td>From idea to discovery: information sharing and cooperation in the exploration value chain</td>
</tr>
<tr>
<td>Remote operations and future operating models</td>
</tr>
<tr>
<td>Exploration efficiency</td>
</tr>
<tr>
<td>Does well data quality affect machine learning performance?</td>
</tr>
<tr>
<td>Automated Seismic Reconstruction of Missing Section</td>
</tr>
<tr>
<td>Automated facies classification through applying machine-learning to pre-stack seismic data</td>
</tr>
<tr>
<td>Automated lithology classification of whole core CT scans</td>
</tr>
<tr>
<td>Machine learning-based generic well log depth matching</td>
</tr>
<tr>
<td>Field development and economics</td>
</tr>
<tr>
<td>Improved planning methods for more energy efficient and environmentally friendly fields in the Barents Sea</td>
</tr>
<tr>
<td>Cost effective development of (small) discoveries on the NCS</td>
</tr>
<tr>
<td>Automated methodologies for decision support in field development</td>
</tr>
<tr>
<td>Optimizing the operation of natural gas infrastructure</td>
</tr>
<tr>
<td>Real options-based valuation for environmentally friendly O&G production</td>
</tr>
<tr>
<td>AI for safety-critical remote operations</td>
</tr>
<tr>
<td>Design, operation and maintenance of offshore energy hubs</td>
</tr>
<tr>
<td>Safety and security in design and operation of ICS systems</td>
</tr>
<tr>
<td>Detection and localization of subsea leakages</td>
</tr>
</tbody>
</table>
BRU21 project matrix: 39(+2) projects

Safety and security in design and operation of ICS systems
Detection and localization of subsea leakages
Detection and localization of subsea leakages

Digital operations and future operating models
Remote operations and future operating models
Remote operations and future operating models

Collaboration and digital tools in early stage design of offshore facilities
From idea to discovery: information sharing and cooperation in the exploration value chain
From idea to discovery: information sharing and cooperation in the exploration value chain

Risk-based maintenance
Risk-based maintenance
Risk-based maintenance

Maintenance in remote operations
Predictive maintenance
Predictive Maintenance and Remaining Useful Lifetime

A hybrid data-driven and mechanistic model for production optimization in the oil and gas industry
Predictive technology for production optimization, with focus on gas lift allocation
Predictive Maintenance and Remaining Useful Lifetime

Optimization of production, reservoir and field development
Optimization of production, reservoir and field development
Optimization of production, reservoir and field development

Data-driven reservoir modelling
Integrated Reservoir Tool/FieldOpt
Machine learning-based production optimization

Avoiding the operation and maintenance of offshore energy hubs
AI for safety-critical remote operations
AI for safety-critical remote operations

Optimization across time-scales in oil and gas production
Risk-based maintenance
Risk-based maintenance

Assisted history matching, reservoir model update and optimization
Assisted history matching, reservoir model update and optimization
Assisted history matching, reservoir model update and optimization

Improved technology for production optimization, with focus on gas lift allocation
Improved technology for production optimization, with focus on gas lift allocation
Improved technology for production optimization, with focus on gas lift allocation

Productive optimization strategies for offshore production systems with water processing constraints
Productive optimization strategies for offshore production systems with water processing constraints
Productive optimization strategies for offshore production systems with water processing constraints

A hybrid data-driven and mechanistic model for production optimization in the oil and gas industry
Predictive technology for production optimization, with focus on gas lift allocation
Predictive Maintenance and Remaining Useful Lifetime

Intelligent data analytics for offshore well integrity and life cycle management
Automated real-time surveillance of drill-string vibrations
Digitalization/automation of life-cycle well integrity

Safe drilling in karstified carbonates
Drilling and Well Reservoir management and Production optimization
Optimization of production, reservoir and field development

Drilling data analytics
Real time fault and symptoms detection in drilling operation with wired pipe
Drilling and Well Reservoir management and Production optimization

Avoiding the operation and maintenance of offshore energy hubs
AI for safety-critical remote operations
AI for safety-critical remote operations

Optimization of production, reservoir and field development
Optimization of production, reservoir and field development
Optimization of production, reservoir and field development

Data-driven reservoir modelling
Integrated Reservoir Tool/FieldOpt
Machine learning-based production optimization

Contribution to reduced environmental footprint
BRU21 model:

Collaboration Research Education Innovation
8 departments / 4 faculties at NTNU

- Engineering
- Geoscience & Petroleum
- Mechanical
- Cybernetics & Robotics
- Data Science & Cyber Security
- People Organization Economics
- NTNU Ocean
- NTNU Digital
- NTNU Energy
Research dissemination

Video Newsletters

- **BRU21**: In-House Research and Innovation Program in Digital and Automation Solutions for the Oil and Gas Industry. The initiative brings together experts from NTNU and the oil and gas and technology companies. [Read more]

Video newsletters: In this series of newsletters, we present BRU21 projects and selected results in the form of short videos covering both of the following areas:

- **BRU21 program area: Exploration Efficiency**
 - BRU21 aims at developing novel automation tools to improve data analysis efficiency in the exploration workflow and training and artificial intelligence in the exploration field.

- **Project result**: Workflow to classify lithology using 3D and 3D CT images
 - Convolutional Neural Networks-based workflows for high-resolution analysis of lithology.

BRU21 project: Automated lithology classification employing whole core CT scans
- Lithology classification enabled by whole core Computational Rock Physics and advanced analytics algorithms

BRU21 Project:
- The impact of well data quality on machine learning performance
 - Structuring and preprocessing of imbalanced data for efficient use with machine learning algorithms

LinkedIn

- **Department of Geoscience and Petroleum**
 - 5,594 followers

- **Egil Tjelta Kenney**
 - Norway Research and Innovation Program in Digital and Automation Solutions for the Oil and Gas Industry
 - NTNU

Efficient cross-boundary collaboration and information sharing are still among the greatest challenges for many organizations. In this project, BRU21 PhD Candidate Natalia Korotkova at Norwegian University of Science and Technology (NTNU) is working on digitalization of knowledge collaboration in the Front-End stage of the oil and gas value chain. The research focus is on preconditions, implementation, and exploitation of digital technologies for knowledge collaboration in different parts of complex organizations. Natalia specializes in social systems by analyzing knowledge networking, trust-building, knowledge reuse, and adoption of emerging technological concepts such as digital twins. Ternipetpac sponsors this project.

LinkedIn Video Newsletters

LinkedIn Video Reports

Innovative dissemination strategy

- 55+ videos on projects and project results
- In total 2+ hours of videos
- Training in business communication
BRU21 Innovation

Innovation projects towards implementation/licensing

ComputerWell – NTNU spin-off 2020
Computational surveillance of drilling operations

- Real-time computational drilling dynamics
- Massively tested pattern recognition
- High frequency GUI
- Along string inspection

Visit: www.computerwell.com

ProDecs – Investment valuation under uncertainty
Better informed investment decisions

Well log depth matching
Well log depth matching using analytical and deep learning

MAC: Look-ahead method for predicting formation changes and karsts
MAC Enables detection of small geological features undetectable with existing technologies

ADF: Drilling data processing
ADF enables detection of small events in logged drilling data

PERMEAN: Rapid downhole testing of permeability anisotropy
PERMEAN provides rapid and accurate downhole measurement of permeability anisotropy within minutes
NTNU Drillbotics Team 2021
Winners of International SPE Drillbotics Competition

Preparing future industry specialists with both digital and petroleum expertise is one of the BRU21 goals.

NTNU team of drilling engineering and cybernetics students – Benedicte Oijendal, Gaute Hänsön, Mikal Viga Skretting and Magnus Steinse – developed a miniature robotic drilling rig for autonomous directional drilling and won the 2021 SPE Drillbotics competition in drilling automation. Coached and sponsored by BRU21, NTNU teams won the competition also in 2018 and took 2nd place in 2017.

1. NTNU
2. OU
3. A&M

1. Texas A&M
2. NTNU
3. UIS
BRU21 Academy: courses for the industry

Petroleum Cybernetics for Engineers and Managers
(A. Pavlov, M. Stanko)

Digital Twins for Managing Safety and Reliability of Systems
(J. Vatn)

Digital solutions for planning and optimization of maintenance
(J. Vatn)

Remote operations
(V. Hepsø)
BRU21 success factors

Success factors:
- Industrial use-cases
- Engaged industrial contacts
- Access to data
- Access to industrial expertise
- Capable & experienced PhDs/PostDocs
- NTNU expertise + supervision
- Focus on Innovation

7 published/accepted
7 submitted
5 in progress

Across 5 BRU21 projects
BRU21

NTNU Research and Innovation Program in Digital and Automation Solutions for the Oil and Gas Industry