

OVERHEATING AND DAYLIGHTING EVALUATION FOR FREE-RUNNING CLASSROOM DESIGNS

1st Nordic Conference on Zero Emission and Plus Energy Buildings

Towards carbon neutral built environments

Martin Kiil

06-07.11.2019

INTRODUCTION

- Indoor temperature and lighting conditions affect study performance
- Optimal daylighting can reduce lighting energy consumption and the need for space cooling.
- School buildings are not used during summertime
- Can nZEB school building classrooms in Estonia (temperate climate) be designed without active room cooling (incl supply air cooling) while ensuring sufficent daylighting and preventing overheating?

METHODS – PARAMETRIC CLASSROOM MODEL

- Envelope parameters (orientation, wall insulation, window size and number, window recess depth, glazing g and VT values, horizontal shading)
- Estonian Building Code regulations for overheating (internal gains, temperature setpoints, ventilation rate, EstonianTRY climate)
- EVS-EN 15251:2007 for thermal environment class
- EVS 2015 EVS 894:2008/A2:2015 for daylighting (reflectance values)

METHODS – INPUT PARAMETER COMBINATIONS

Room dimensions	Envelope	Windows	Window dimensions	Orien- tation	Glazing g- value	Glazing VT (%)	Shading depth (hor.)
Depth, m:	Ext. wall:	Frame fraction 0.34	Recess depth	Е	0.35	0.635	-
5, 6, 7, 8, 9 Width, m 5, 6, 7, 8, 9	Concrete 150mm	East/south/west: $U_g 0.58W/(m^2 \cdot K)$ $U_{tot} 0.60W/(m^2 \cdot K)$ East/west with	0.25m Room width, number of windows-		0.42	0.707	0.9m
	Exp.polystyr.			S	0.35	0.635	-
	300mm					-	0.9m
	Concrete 50mm			W	0.35	0.635	-
	$U_{tot} 0,129 W/(m^2 \cdot K)$				0.42	0.707	0.9m
	Ext. window perimeter thermal bridge: 0.1W/(m·K) Fixed infiltration: 1.5m ³ /(h·m ²)	shading: $U_g 0.70 W/(m^2 \cdot K)$ $U_{tot} 0.71 W/(m^2 \cdot K)$ North: $U_g 0.61 W/(m^2 \cdot K)$ $U_{tot} 0.62 W/(m^2 \cdot K)$ (north)	width/height: 5m, 2-1.9/1.7m 6m, 3-1.466/1.7m 7m, 3-1.8/1.7m 8m, 4-1.45/1.7m 9m, 4-1.7/1.7m	Ν	0.54	0.733	-

Table 1. Room and facade parameter combinations.

Table 2. Simulation input parameters.

Sch	edules	Internal gains			Daylighting		
Internal gains	Ventilation	Occupancy	Lighting / Equipment	Temp. setpoint	Supply air temperature	CAV air exchange	Reflectance values (%)
00:00-07:00 - 0.0	00:00-08:00 - 0.036	35W/m ²	5.0W/m ²	+21°C	>+16°C	4.2	Walls 50
07:00 - 17:00 - 1.0	08:00-12:00 - 0.8	$2.1 \mathrm{m}^2/\mathrm{occ}$.	$12.0W/m^2$		(without	$l/(s \cdot m^2)$	Floor 20
17:00-00:00-0.0	12:00-13:00 - 0.5	1.0 MET		+25°C	cooling)		Ceiling 70
	13:00-16:00 - 0.8	0.85±0.25 CLO				idle 0.15	Shading 35
	16:00-00:00 - 0.036					$l/(s \cdot m^2)$	Ground 20

METHODS - SIMULATIONS

IDA ICE - temperature

Mean air temperature, °C

RESULTS - EAST

RESULTS - SOUTH

RESULTS - WEST

RESULTS – NORTH & OVERALL

CONCLUSIONS

- Overheating and daylighting should be analysed jointly
- Results show that as window-to-floor ratio increases, the room receives more daylight but also becomes more vulnerable to temperature rise and overheating
- In the other hand, with increasing depth, overheating risk lowers and daylight level decreases
- Temperature excess overheating method results correlates well with daylight result distribution
- Proper design requires skillful analysis of suitable combination of room dimensions, window sizes, glazing parameters and shading options to meet both overheating and daylight requirements

TALLINN UNIVERSITY OF TECHNOLOGY

Ehitajate tee 5, 19086 Tallinn, Estonia

www.taltech.ee