

Opportunities for Local Energy Supply in Norway: A Case Study of a University Campus Site

<u>S. Backe</u>, Å. L. Sørensen, D. Pinel, J. Clauß, C. Lausselet The Research Centre on Zero Emission Neighbourhoods in Smart Cities (FME ZEN)

1st Nordic ZEB+ November 6th, 2019

Outline

- Energy system at Campus Evenstad
- Monetary value of energy assets
- Investment analysis: «100 %» ZEN
- Conclusions

Photo: Arne Nyaas, Fjellfolk Media

Photo: Arne Nyaas, Fjellfolk Media

Passive house w/ solar thermal collector (2015)

Photo: Arne Nyaas, Fjellfolk Media

Photo: Arne Nyaas, Fjellfolk Media

Photo: Arne Nyaas, Fjellfolk Media

Monetary value of energy assets

SINTEF NTNU

Monetary value of local energy

Measure	Calculation	Savings
Reduced grid import (net metering)	(0.39 ^a + 0.02 + 0.04 + 0.1658 + 0.02)(1.25)	0.79 NOK/kWh

^a SSB (avg. spot price 1st quarter 2018). URL: <u>https://www.ssb.no/elkraftpris/</u>

Monetary value of local energy

Measure	Calculation	Savings	-
Reduced grid import (net metering)	(0.39 ^a + 0.02 + 0.04 + 0.1658 + 0.02)(1.25)	0.79 NOK/kWh	-57%
Grid export	(0.39 ^a + 0.02 + 0.04)	0.45 NOK/kWh	57 / 6

^a SSB (avg. spot price 1st quarter 2018). URL: <u>https://www.ssb.no/elkraftpris/</u>

Monetary value of local energy

Measure	Calculation	Savings	-
Reduced grid import (net metering)	(0.39 ^a + 0.02 + 0.04 + 0.1658 + 0.02)(1.25)	0.79 NOK/kWh	-57%
Grid export	(0.39 ^a + 0.02 + 0.04)	0.45 NOK/kWh	// / ر-
Peak shaving (over 12 months)	(432)(1.25)	540 NOK/kWh/h	

^a SSB (avg. spot price 1st quarter 2018). URL: <u>https://www.ssb.no/elkraftpris/</u>

Investment analysis: «100 %» ZEN

- Investment and operation
 - Lifetime investments
 - Hourly operations
 - Heat and electricity
- Cost minimization
- Ambitious emission target

$$\sum_{t} (y_t^{imp} - y_t^{exp}) \cdot \alpha^{CO_2, \text{el}} + \sum_{t} \sum_{f} \alpha_f^{CO_2, \text{fuel}} \cdot q_{f,t} = 0$$

- Index *t* represents hourly time steps over the representative year
- Index *f* represents fuel type (bio, gas etc.)

1 2 3 4

Asymmetric CO2-factor Annual balance

Symmetric CO2-factor Annual balance

Symmetric CO2-factor Annual balance 100 kW export limit

Symmetric CO2-factor Quarterly balance

I

3

I

3

Most monetary value on increased self-consumption Dependent on

Dependent on emission factor assumptions

Solar PV most costefficient emission compensation

ONTNU OSINTEF

CONSEQUENCES OF LOCAL **ENERGY SUPPLY IN NORWAY**

A case study on the ZEN pilot project Campus Evenstad ZEN REPORT No. 17 - 2019

S. Backe, A. L. Sørensen, D. Pinel, J. Clauß, C. Lausselet, R. Woods | NTNU, SINTEF

Takk for oppmerksomheten!

Electricity use at Campus Evenstad

KPIs for electricity at Campus Evenstad. Estimates are marked with *

	2015	2016	2017 (ex. Jan)
Grid electricity (net) [kWh]	1,012,941	1,058,962	906,955
Max import [kWh/h]	436	479	468
Grid utilisation factor [%]	27	25	24
Average [kWh/h]	116	121	104
Export [kWh]	0	158	70
Delivered electricity PV [kWh]	62,454	61,960	62,000*
Delivered electricity CHP [kWh]	-	160,000*	160,000*
Self-consumption [%]	100	99.93	99.97
Self-generation [%]	6*	17*	20*

Emission factor of electricity

Energy source	CO ₂ -eq
Electricity output [kg/M	Wh _{out}]
Hard coal	660-1050
Lignite	800-1300
Natural gas	380-1000
Oil	530-900
Nuclear power	3–35
Biomass	8.5–130
Hydropower	2–20
Solar energy	13–190
Wind	3–41

ZEB-factor: 132 gCO2eq/kWh

Source:

Ζ

ZERO EMISSION NEIGHBOURHOODS IN SMART CITIES

> Turconi, Roberto, Alessio Boldrin, and Thomas Astrup. "Life cycle assessment (LCA) of electricity generation technologies: Overview, comparability and limitations." *Renewable and sustainable energy* reviews 28 (2013): 555-565.

SINTEF ONTNU

Emission factor of electricity

