#### Future energy pathways for a university campus considering possibilities for energy efficiency improvements

**Natasa Nord**, Nina Holck Sandberg, Huy Ngo, Eirik Nesgård, Aleksandra Woszczek, Tymofii Tereshchenko, Jan Sandstad Næss, Helge Brattebø

Norwegian University of Science and Technology

## Objectives

- Find the most relevant energy efficiency measures that will decrease the total energy use of the NTNU campus
- The NTNU campus consists of many existing buildings and new will be built
- The work was developed in collaboration with the NTNU Property Division as a part of NTNU development



#### **Big picture of energy planning**



#### Method

- Typical reference buildings have been defined based on the construction years
- Each group of reference building was called "Cohort"
- Energy efficiency measures were introduced as packages
- IDA-ICE was used for modeling
- Material flow analysis was used to aggregate the energy use data

#### **Building type**

| Cohort            | Model |
|-------------------|-------|
| Before 1950 – C1  | B1    |
| 1951-1970 – C2    | B2    |
| 1971-1999 – C3    | B3    |
| 2000-2010 – C4    | B4    |
| 2017 – after – C5 | B5    |



# **Typical building**

Based on the statistical analysis and the methodology to define a typical building, a representative building model was developed





Eirik Nesgård and Minh Huy Ngo, Future energy pathways – possibilities for energy efficiency improvement and transition to renewable energy sources in building stock, MSc thesis, NTNU, 2018

#### **Energy efficiency measures**

| Package               |                          | Component                                                  | Energy efficiency measures                                 |
|-----------------------|--------------------------|------------------------------------------------------------|------------------------------------------------------------|
| P1: Standard package  |                          | Outer walls 1                                              | Insulation with 50 mm mineral wool                         |
|                       | Roof                     | Insulation with 50 mm mineral wool                         |                                                            |
|                       | Windows 1                | TEK17 level (U-value 0.8 W/(m <sup>2</sup> K))             |                                                            |
|                       | Air tightness            | Improvement of leakage rate to 1.5 l/h                     |                                                            |
|                       | Thermal bridge           | Improvement of thermal bridge to 0.06 W/(m <sup>2</sup> K) |                                                            |
| P2: Ambitious package |                          | Outer walls 2                                              | Insulation with 100 mm mineral wool                        |
|                       |                          | Roof                                                       | Insulation with 50 mm mineral wool                         |
|                       |                          | Windows 2                                                  | Ambitious level (U-value 0.6 W/(m <sup>2</sup> K))         |
|                       |                          | Air tightness                                              | Improvement of leakage rate to 1.5 l/h                     |
|                       |                          | Thermal bridge                                             | Improvement of thermal bridge to 0.06 W/(m <sup>2</sup> K) |
| P4 = P2 + P3          | P3: Technical<br>package | Heat recovery ventilation                                  | Replacement of heat recovery with 80%                      |
|                       |                          | Low temperature heating system                             | Switch from 80/60°C to 60/40°C                             |



#### **Heat duration curves**

Heat duration curve for the representative building built between 1951 - 1970





#### **Building stock development at NTNU**

The total campus area development over until 2050



#### **Development of total energy use at NTNU**

#### Standard renovation Advanced renovation Energy demand [GWh] Energy demand [GWh] C1: 0-1950 C2: 1951-1970 C1: 0-1950 C3: 1971-1999 2: 1951-1970 3: 1971-1999 C4: 2000-2016 24: 2000-2016 C5: 2017-2025 C5: 2017-2025 Year Year

#### 🖸 NTNU

### Conclusions

- Most of the buildings at the campus were built between 1951-1970
- Saving potentials were highly dependent on the construction period of the buildings
- Ambitious renovation in combination with technical improvements showed the greatest improvements
- A substantial heating energy could be saved by implementation of simple technical measures
- Improvement in the ventilation system gave the best results



#### Thank you for the attention!

natasa.nord@ntnu.no

