Energy flexibility in buildings – what is the potential and how can it be realized?

Igor Sartori, <u>igor.sartori@sintef.no</u> Senior research scientist, PhD, SINTEF 1st Nordic conference on Zero Emission and Plus Energy Buildings

Trondheim, 06.11.2019

1

What is energy flexibility?

The Energy Flexibility of a building or neighborhood is the ability to manage its demand and generation according to local climate conditions, user needs and grid requirements.

• Definition by the IEA EBC Annex 67 "Energy flexible buildings"

Why do we need it?

 Energy system, especially power system, traditionally with a supply side dominated by controllable energy sources (e.g. fossil fuels) and a demand side mostly inflexible, driven by user needs only

 As the supply becomes increasingly based on intermittent renewable sources (e.g. wind and solar), energy demand should become more flexible/controllable in order to "optimize" the overall energy system... with the help of digitalization

"Optimize" what?

Different goals, each contributing to a sustainable energy system:

Better match between supply and demand allows:

- Integrate more renewables, such as wind and solar
- Minimize need for large scale storage

Better utilization of infrastructure (grid):

- Reduce peak load and congestion problems
- Free capacity for other uses, such as EV or export
- Avoid, reduce or postpone costly grid reinforcement

❑ Maximise self-consumption of local generation, such as PV

Energy flexibility in buildings

 If the flexible resource is independent of the building's load profile

 Load can be forecasted based on past observations and external factors, e.g. weather

• Control is affected by forecast

SINTEF

Consumption

Source: Damiano A. *et al.* (2018) Vehicle-to-Grid Technology: State-of-the-Art and Future Scenarios, *Journal of Energy and Power Engineering*

() SINTEF

• If the flexible resource is the building's load profile itself

- Load must be modelled together with building's internal "states", e.g. indoor temperature
- Control is affected by forecast & model used!

() SINTEF

Zero Emission Building – Living Lab

Passive house, PV, sensors, people

Trondheim, Mid-Norway

Control-oriented modeling is acknowledged as the most demanding part in the design of a Model Predictive Control (MPC)

Source: Vogler-Finck P. *et al.* (2017) A dataset to support dynamical modelling of the thermal dynamics of a super-insulated building. http://dx.doi.org/10.5281/zenodo.1034819

First experiments with MPC

Example 2: Minimize peak power

Source: Work in progress (Walnum H.T., SINTEF)

Technology for a better society