

The first Nordic conference on Zero Emission and Plus Energy Buildings November 2019, Trondheim, Norway

Analysing electricity demand in neighbourhoods with electricity generation from solar power systems: A case study of a large housing cooperative in Norway

Å L Sørensen^{1*}, I Sartori¹, <u>K B Lindberg¹ and I Andresen²</u>

¹ SINTEF, Oslo, Norway; ² NTNU, Trondheim, Norway.

* Corresponding e-mail: <u>ase.sorensen@sintef.no</u>

Introduction to the case

How does electricity generation from photovoltaic (PV) systems fit with electricity demand in a housing cooperative, on an hourly basis?

Size and location?

Case Risvollan housing cooperative

- Trondheim, Norway, built in the 1970s
- 1000 apartments in 120 building blocks (94 000 m² heated floor area)
- Energy infrastructure
 - **District heating** 139 kWh/m²
 - 57 kWh/m² Electricity

Female Male

Method – Simulation of PV generation

- PVsyst simulation for two orientations
 - Rooftop
 - 15° tilt orientated east west
 - 754 kWh/kW_p
 - Building façades
 - 90° tilt orientated south
 - 800 kWh/kW_p
- 2018-climate data from eKlima
- Hourly PV generation from PV systems
 - Rooftop: 50, 100, 500, 1000, 2000 kW_p
 - Façade: 50, 100, 500 kW_p

Self-consumption of PV-generated electricity

In Norway:

- Prosumer agreement Normally financially beneficial to maximise self-consumption
 - Electricity generated behind an AMS-meter can be used directly
- Self-consumption factor is therefore important when evaluating results
- Several AMS-meters in a housing cooperative
 - Every apartment has an AMS-meter
 - Housing cooperatives normally have several AMS-meters
- Location of AMS-meters affects self-consumption factor

Electricity demand in common areas versus total

- Common areas
 - Street lighting
 - Lighting in hallway of apartment blocks
 - Lighting in garage
 - Automatic gates in garage
 - EV charging
- Total
 - Individual aparatments
 - Common areas

Results: Self-consumption

Common areas electricity demand (576 MWh/yr)

Total

electricity demand

(4,977 MWh/yr)

Roof (East-west, 15°)

Facade (South, 90°)

6

• South oriented façade-placed systems generate more electricity during swing seasons, compared to east-west oriented rooftop systems, but have a lower electricity generation during the summer

Example week April, hourly load and generation

Common areas

Daily average electricity profiles

Common areas

• East-west oriented rooftop systems generate more electricity early and late during the day, but less mid-day during the swing season, compared to south oriented façade-placed systems

Hourly net electric load duration curves

• The export increases, if the PV system is large compared to the electricity demand

PV system configuration

PV system tilt	Spring	Summer	Autumn	Winter	Annual
Façades (90°)	+		+	+	Generates about 5-6% more
Rooftop (15°)		+			

PV system orientation	Morning	Mid-day	Afternoon
Façades (south)		+	
Rooftop (east-west)	+		+

- Practical considerations:
- Limited suitable areas available on façades. Roofs are more available

Conclusion

 A combination of PV systems on the roofs and façades seem advisable

Economic analysis

PV plant

1 100 kW_p PV

(equal to 50 kW_p on each of the 22 garages)

Cases

- A: 22 PV plants to 22 garages
- B: 1 PV plant to common areas
- C: 1 PV plant to total Risvollan (apartments and common areas)

Assumptions

price buy:	1.0 NOK/kWh		
price sell:	0.5 NOK/kWh		

Results of economic analysis

		Self-	Total	
		consumption	annual value	Comment
A:	22 PV plants, electricity used in 22 garages	14.3%	475 kNOK	Possible today
B:	1 PV plant, electricity used in common areas	22.6%	508 kNOK	7% higher
C:	1 PV plant, electricity used in total Risvollan (apartments and common areas)	95%	808 kNOK	70% higher

Conclusion

- Case study
 - Analysing how PV production matches electricity use for a housing cooperative of 1,058 apartments
- Economic results
 - Financial beneficial to use PV electricity locally for total Risvollan (both common areas and apartments)
 - For this to be possible, also housing cooperatives must be facilitated for in the prosumer agreement
- Size and type of PV plant
 - For the total housing cooperative, a PV capacity of about 1000 kW_p seem suitable, roof-mounted, east-west oriented
 - Gives a self-consumption factor of 97% based on 2018 data

Acknowledgements

With funding from

The Research Council of Norway

Research Centre on ZERO EMISSION NEIGHBOURHOODS IN SMART CITIES

Research Centre on ZERO EMISSION NEIGHBOURHOODS IN SMART CITIES