

Microclimate analysis of a university campus in Norway

Johannes Brozovsky*1, Sara Corio², Niki Gaitani¹, Arild Gustavsen¹

¹ Department of Architecture and Technology, Faculty for Architecture and Design, NTNU – Norwegian University of Science and Technology, Høgskoleringen 1, 7491 Trondheim, Norway
 ² Department of Civil, Chemical and Environmental Engineering (DICCA), University of Genoa, 16145 Genoa, Italy

*corresponding author: johannes.brozovsky@ntnu.no

1st Nordic ZEB⁺ Conference, Trondheim, Nov. 6–7 2019

Content

1. Introduction

- •Why urban microclimate?
- •Aim of study
- Study area

2. Methodology

- Field observations
- Numerical modeling

3. Results

Microclimate analysis

4. Concluding remarks

5. Limitations & Future work

1. Introduction – Why urban microclimate?

esearch Centre on ERO EMISSION

SMART CITIES

1. Introduction – Aim of the study

NTNU Gløshaugen campus is in the early stages of a redevelopment:
+ 90 000 m² added until 2027 and existing buildings will be refurbished.
It is part of the Knowledge Axis & a Pilot project of the ZEN Centre

Investigate the current microclimatic conditions of a part of Gløshaugen campus

Use numerical tool ENVI-Met and on-site measurements for its validation

First step towards a more detailed study on how to improve microclimatic conditions over the course of the redevelopment

Evaluation of proposed solutions with models

Z N ZERO EMISSION NEIGHBOURHOOD IN SMART CITIES

1. Introduction – Study area

Category	Year of construction	Wall material	Roof Material		
A1	1900-1950	Stone: granite	Wood: spruce		
A2	1900-1950	Solid brick	Wood: spruce		
B1	1951-2000	Concrete: filled blocks	Concrete: default		
B2	1951-2000	Glass: clear float	Glass: clear float		
B3	1951-2000	Wood: spruce	Wood: spruce		

2. Methodology

7

tesearch Centre on ZERO EMISSION

SMART CITIES

Field Observations

Infrared Measurements

Validation N

Numerical Modeling

Simulations with ENVI-Met model

3. Results – Microclimate analysis

Boundary conditions

- i. Simulation of winter & summer Solstice and vernal & autumnal Equinox (2018)
- ii. Hourly Air Temperature T & Rel. Humidity RH values Daily mean Wind Speed & main wind Direction

	T _{min} (LST) [°C]	T _{max} (LST) [°C]	<i>₩</i> [m/s]	φ [%]	t _{sr} (LST)	t _{ss} (LST)	t _{sim,s} (LST)	t _{sim,e} (LST)	t _{sim,tot} [h]
21.03.	2.6 (05:00)	4.2 (16:00)	1.7	85.1	06:17	18:35	06:00	19:00	13.0
21.06.	8.3 (06:00)	12.2 (18:00)	1.8	73.5	03:02	23:37	03:00	24:00	21.0
23.09.	5.5 (19:00)	8.0 (15:00)	2.5	77.7	07:03	19:16	07:00	20:00	13.0
<u>21.12.</u>	0.2 (06:00)	0.9 (12:00)	2.6	55.0	10:01	14:31	06:00	15:00	9.0

3. Results – Microclimate analysis- Simulated values of Tair

21 June 12:00

lesearch Centre on ZERO EMISSION NEIGHBOURHOODS IN SMART CITIES

3. Results – Microclimate analysis- Simulated values of Tair

23 September 12:00

Research Centre on ZERO EMISSION

FIGHBOURHOODS

N SMART CITIES

21 December 12:00

9

3. Results – Microclimate analysis-Wind Field 21 June 12:00

Wind speed change: % referring to the undisturbed inflow profile at the same height level

4. Concluding remarks

- The simulated air temperatures largely correlate to the different surface types
 - Materials with high heat storage capacity present higher air temperatures than the vegetated areas
 - Areas in front of south-facing and sunlit surfaces present elevated local air temperatures
- On 21 December (almost no solar radiation and low sun angles) larger influence of materials
- Highest local difference in air temperature occurred on 21 June with 3.4 K, lowest on 21 December with 1.0 K
- East-west passages were identified to have highest local wind speeds (up to 57.1 % more than reference)

5. Limitations & Future work

Envi-met model limitations

- The program does not allow for a detailed representation of the environment (limitations in grid resolution & structure)
- Only basic CFD capabilities in ENVI-Met
- ENVI-met software is designed to model urban heat stress usually dealing with above freezing temperatures. ENVI-met is also as of now an exclusively dry model. This means precipitation is not modelled in any form within the software.

Future steps: More detailed study with several weather stations around the campus & "real" CFD with finer discretisation

