Validation of a Flexibility Assessment Methodology for Demand Response in Buildings

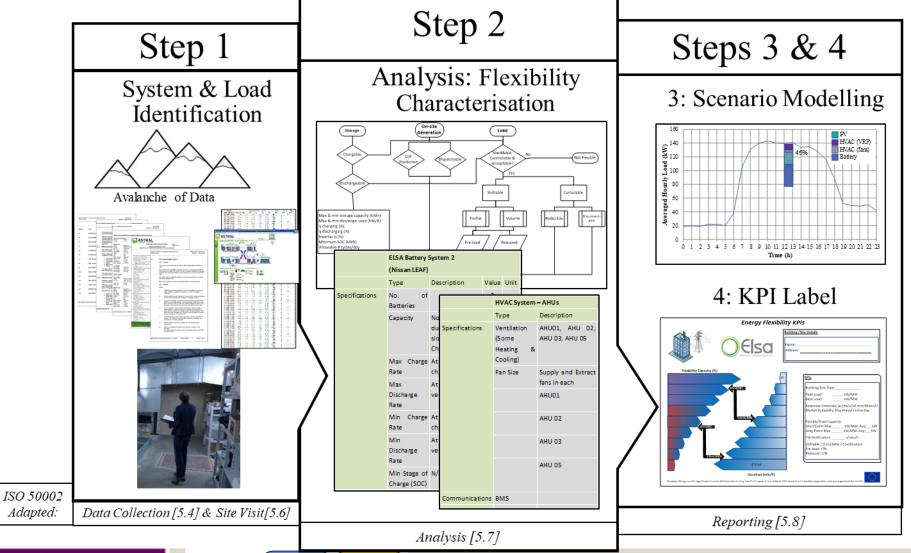
S O'Connell, G Reynders, F Seri and M Keane

Sarah O'Connell, NUI Galway

1st Nordic Conference on Zero Emission and Plus Energy Buildings 2019, 6th November 2019, Trondheim

Ryan Institute

Environmental, Marine and Energy Research



4 - Step Methodology

NUI Galway

OÉ Gaillimh

Use Cases

Specific use cases required to validate flexibility for selected sources in buildings

• **Peak shaving** - reducing grid import of electricity during periods of peak consumption

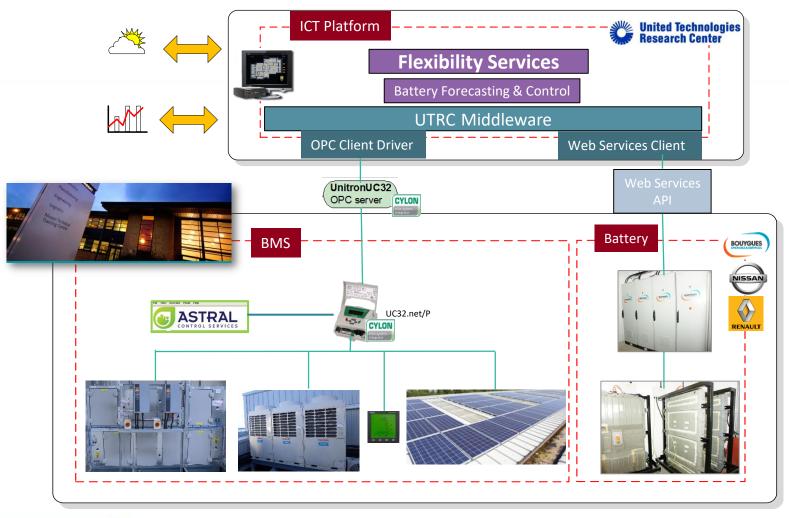
Implemented: Commercial building, Paris & Cluster of buildings, Terni

• **Intra-day Grid Request** – market based programme which requires building to respond to a grid request intra-day within a short timeframe

Implemented: Commercial building, Sunderland

• CO₂ minimisation - incentivise electricity use or reduction in times of high or low renewable generation on the grid

Implemented: Aachen building


• **PV power smoothing** - mitigate PV generation variability

Iimplemented: Kempten Residential District

Experimental Set-up

ICT platform architecture for use case demonstration experiments

Results – Sunderland Pilot Site

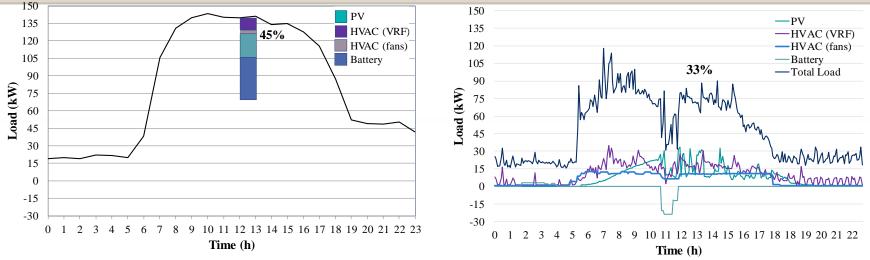
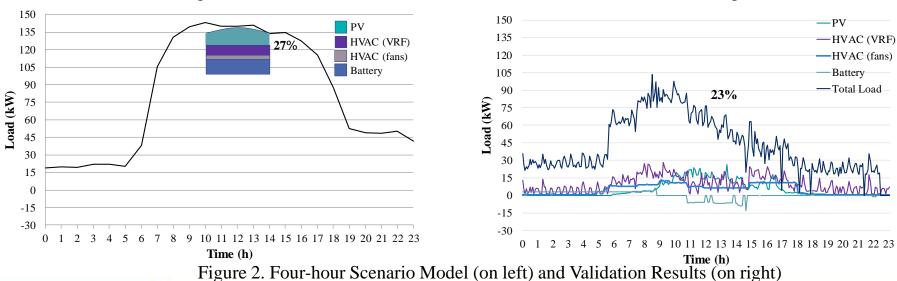



Figure 1. One-hour Scenario Model (on left) and Validation Results (on right)

Results – Multiple Buildings

	Туре	Sources	Use Case	Use Case Flexibility (%)		
Pilot Site Location				Predicted	Actual	Error
Sunderland, UK	Building	F ^{RES} , F ^S , F ^L	Intra-day Grid Request	45% (36%)	33%	26% (9%)
Terni, IT	Cluster of Buildings	F ^{RES} , F ^S	Peak Shaving	90%	81%	10%
Paris, FR	Building	Fs	Peak Shaving	9%	7%	22%
Aachen, DE	Building	F^{L}	CO ₂ Min	3%	3%	-
Kempten, DE	Residential District	F ^{RES} , F ^S	PV Power Smoothing	103%	106%	3%

F^{RES} = Renewable Energy System Flexibility (PV), F^S= Storage Flexibility (Battery), F^L = Load Flexibility;

Conclusions

Standardised 4-step flexibility assessment process developed, demonstrated & validated

Practical impact:

- Reduces complexity and cost
- Enables contract negotiations
- Ease of implementation
- Accuracy
- Scalability

Societal impact:

- operationalise building flexibility to a wider spectrum of society

Acknowledgements

Communities Programme

International Energy Agency's (IEA) Energy in Buildings and Communities (EBC) Annex 67 'Energy Flexible Buildings'

Sustainable Energy Authority of Ireland

ELSA (Energy Local Storage Advanced system) Project which received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement number 646125.

