

PARAMETRIC STUDY FOR THE LONG TERM ENERGETIC PERFORMANCE OF GEOTHERMAL ENERGY PILES

Andrea Ferrantelli Department of Civil Engineering and Architecture Tallinn University of Technology

07.11.2019 1st Nordic ZEB+, Trondheim A. Ferrantelli, J. Fadejev and J. Kurnitski - Parametric study for the long term energetic performance of geothermal energy piles

MOTIVATION:

Energetic performance and renewable resources

MOTIVATION:

Energetic performance and renewable resources

 Energy piles (GHE): U-shaped heat exchangers inserted inside the foundation piles of buildings.

Bao, Xiaohua, et al. "Thermal properties of cement-based composites for geothermal energy applications." *Materials* 10.5 (2017): 462.

MOTIVATION:

Energetic performance and renewable resources

- Energy piles (GHE): U-shaped heat exchangers inserted inside the foundation piles of buildings.
- Simulations often focus only on heat transfer in the <u>foundation</u> <u>soil</u>.

MOTIVATION:

Energetic performance and renewable resources

- Energy piles (GHE): U-shaped heat exchangers inserted inside the foundation piles of buildings.
- Simulations often focus only on heat transfer in the <u>foundation</u> <u>soil</u>.
- A full parametric study <u>including</u>
 <u>the heat pump system above</u>.

Bao, Xiaohua, et al. "Thermal properties of cement-based composites for geothermal energy applications." *Materials* 10.5 (2017): 462.

A. Ferrantelli, J. Fadejev and J. Kurnitski - Parametric study for the long term energetic performance of geothermal energy piles

METHOD

METHOD

■ IDA-ICE model for a commercial hall-type building in Finland (Helsinki climate data ~5000 HDD w. Tb=20C), validated in [1].

[1] Fadejev J and Kurnitski J (2015), Energy and Buildings 106 23 – 34 ISSN 0378-7788

METHOD

- IDA-ICE model for a commercial hall-type building in Finland (Helsinki climate data ~5000 HDD w. Tb=20C), validated in [1].
- Simulations: 20 years. Many different building models depending on heat pump power, total length, specific heat extraction rate (W/m).

[1] Fadejev J and Kurnitski J (2015), Energy and Buildings 106 23 – 34 ISSN 0378-7788

METHOD

- IDA-ICE model for a commercial hall-type building in Finland (Helsinki climate data ~5000 HDD w. Tb=20C), validated in [1].
- Simulations: 20 years. Many different building models depending on heat pump power, total length, specific heat extraction rate (W/m).
- Soil type: <u>clay</u>. No stratification, <u>no thermal storage</u>.

[1] Fadejev J and Kurnitski J (2015), Energy and Buildings 106 23 – 34 ISSN 0378-7788

A. Ferrantelli, J. Fadejev and J. Kurnitski - Parametric study for the long term energetic performance of geothermal energy piles

RESULTS

RESULTS

<u>Technical parameters</u>:

Foundation piles: L=15m-30m

Design heat load: 360 kW.

Annual heating demand: 168 MWh.

Spacing: 6m, 4.5m, 3m.

RESULTS

<u>Technical parameters</u>:

Foundation piles: L=15m-30m

Design heat load: 360 kW.

Annual heating demand: 168 MWh.

Spacing: 6m, 4.5m, 3m.

TALLINN UNIVERSITY OF TECHNOLOGY

RESULTS

<u>Technical parameters</u>:

Foundation piles: L=15m-30m

Design heat load: 360 kW.

Annual heating demand: 168 MWh.

Spacing: 6m, 4.5m, 3m.

TAL TECH

TALLINN UNIVERSITY OF TECHNOLOGY

Example: 200 W/m, 6m spacing, L=30m, Heat pump evaporator sized at ca 215 kW.

A. Ferrantelli, J. Fadejev and J. Kurnitski - Parametric study for the long term energetic performance of geothermal energy piles

			step 3m		step 4.5 m		${f step~6m}$	
			15m	$30 \mathrm{m}$	15m	$30 \mathrm{m}$	15m	$30 \mathrm{m}$
		evaporator sizing power, W/m	20	18	20	19		20
		yield, kWh/m	21	20	22	22	_	21
Initial heat	$20~\mathrm{W/m}$	ground area yield, kWh/m2a	34	62	14	27	- -	20
inclar frede		demand covered by the heat pump	97%	90%	97%	96%		97%
pump		evaporator sizing power, W/m	33	22	37	31	38	34
ovaporator		yield, kWh/m	37	25	41	35	41	37
evaporator	$40~\mathrm{W/m}$	ground area yield, kWh/m2a	57	77	26	43	19	35
Power		demand covered by the heat pump	83%	56%	92%	76%	94%	84%
		evaporator sizing power, W/m	38	24	47	35	50	40
[W/m]		yield, kWh/m	42	27	52	39	55	44
	$60 \mathrm{\ W/m}$	ground area yield, kWh/m2a	65	83	32	48	26	41
		demand covered by the heat pump	63%	40%	77%	57%	83%	66%

(Blank column: oversized system)

A. Ferrantelli, J. Fadejev and J. Kurnitski - Parametric study for the long term energetic performance of geothermal energy piles

			step 3m		step 4.5 m		step 6m	
			15m	$30 \mathrm{m}$	15m	$30 \mathrm{m}$	15m	$30 \mathrm{m}$
	20 W/m	evaporator sizing power, W/m	20	18	20	19		20
		yield, kWh/m	21	20	22	22	_	21
Initial heat		ground area yield, kWh/m2a	34	62	14	27	_	20
		demand covered by the heat pump	97%	90%	97%	96%		97%
pump	40 W/m	evaporator sizing power, W/m	33	22	37	31	38	34
evaporator		yield, kWh/m	37	25	41	35	41	37
		ground area yield, kWh/m2a	57	77	26	43	19	35
Power		demand covered by the heat pump	83%	56%	92%	76%	94%	84%
	60 W/m	evaporator sizing power, W/m	38	24	47	35	50	40
[W/m]		yield, kWh/m	42	27	52	39	55	44
		ground area yield, kWh/m2a	65	83	32	48	26	41
		demand covered by the heat pump	63%	40%	77%	57%	83%	66%

(Blank column: oversized system)

A. Ferrantelli, J. Fadejev and J. Kurnitski - Parametric study for the long term energetic performance of geothermal energy piles

DISCUSSION

 Results for 20 years, pile field buried in clay, no thermal storage.

 Results for 20 years, pile field buried in clay, no thermal storage.

1. Energy performance <u>not linear</u> w.r.to the initial evaporator extraction power (W/m). —

Evaporator power (solid) and condenser yield (dashed), L=30m

 Results for 20 years, pile field buried in clay, no thermal storage.

- 1. Energy performance <u>not linear</u> w.r.to the initial evaporator extraction power (W/m). —
- 2. % demand covered is e.g. 97%, 83%, 63% resp. for 20, 40, 60 W/m.

Evaporator power (solid) and condenser yield (dashed), L=30m

 Results for 20 years, pile field buried in clay, no thermal storage.

- 1. Energy performance <u>not linear</u> w.r.to the initial evaporator extraction power (W/m). —
- 2. % demand covered is e.g. 97%, 83%, 63% resp. for 20, 40, 60 W/m.
- 3. 15m long piles <u>performed better</u> than 30m long piles, due to floor heat loss.

Evaporator power (solid) and condenser yield (dashed), L=30m

Evaporator power (solid) and condenser yield (dashed), L=15m

 Results for 20 years, pile field buried in clay, no thermal storage.

- 1. Energy performance <u>not linear</u> w.r.to the initial evaporator extraction power (W/m). —
- 2. % demand covered is e.g. 97%, 83%, 63% resp. for 20, 40, 60 W/m.
- 3. 15m long piles <u>performed better</u> than 30m long piles, due to floor heat loss.
- 4. A <u>larger spacing</u> is preferable.

Evaporator power (solid) and condenser yield (dashed), L=30m

Evaporator power (solid) and condenser yield (dashed), L=15m

TALLINN UNIVERSITY OF TECHNOLOGY

- Results for 20 years, pile field buried in clay, no thermal storage.
- 1. Energy performance <u>not linear</u> w.r.to the initial evaporator extraction power (W/m). —
- 2. % demand covered is e.g. 97%, 83%, 63% resp. for 20, 40, 60 W/m.
- 3. 15m long piles <u>performed better</u> than 30m long piles, due to floor heat loss.
- 4. A <u>larger spacing</u> is preferable.
- 5. Evaporator yield: 20<E<55 kWh/m per year.

Evaporator power (solid) and condenser yield (dashed), L=30m

Evaporator power (solid) and condenser yield (dashed), L=15m

A. Ferrantelli, J. Fadejev and J. Kurnitski - Parametric study for the long term energetic performance of geothermal energy piles

CONCLUSIONS AND PERSPECTIVES

A. Ferrantelli, J. Fadejev and J. Kurnitski - Parametric study for the long term energetic performance of geothermal energy piles

CONCLUSIONS AND PERSPECTIVES

CONCLUSIONS:

 Simulations combining heat transfer in the soil with pumping system above.

- Simulations combining heat transfer in the soil with pumping system above.
- Period of 20 years, commercial halltype building in cold climates.

- Simulations combining heat transfer in the soil with pumping system above.
- Period of 20 years, commercial halltype building in cold climates.
- Piles length, spacing and performance.

- Simulations combining heat transfer in the soil with pumping system above.
- Period of 20 years, commercial halltype building in cold climates.
- Piles length, spacing and performance.
- Shorter piles are more performing.

- Simulations combining heat transfer in the soil with pumping system above.
- Period of 20 years, commercial halltype building in cold climates.
- Piles length, spacing and performance.
- Shorter piles are more performing.
- Smaller initial extraction power.

CONCLUSIONS:

- Simulations combining heat transfer in the soil with pumping system above.
- Period of 20 years, commercial halltype building in cold climates.
- Piles length, spacing and performance.
- Shorter piles are more performing.
- Smaller initial extraction power.

TAL
TALLINN UNIVERSITY OF TECHNOLOGY

Preliminary sizing of the GHE system.

CONCLUSIONS:

- Simulations combining heat transfer in the soil with pumping system above.
- Period of 20 years, commercial halltype building in cold climates.
- Piles length, spacing and performance.
- Shorter piles are more performing.
- Smaller initial extraction power.

Preliminary sizing of the GHE system.

CONCLUSIONS:

- Simulations combining heat transfer in the soil with pumping system above.
- Period of 20 years, commercial halltype building in cold climates.
- Piles length, spacing and performance.
- Shorter piles are more performing.
- Smaller initial extraction power.

Preliminary sizing of the GHE system.

PERSPECTIVES:

Extend to other buildings and climates.

CONCLUSIONS:

- Simulations combining heat transfer in the soil with pumping system above.
- Period of 20 years, commercial halltype building in cold climates.
- Piles length, spacing and performance.
- Shorter piles are more performing.
- Smaller initial extraction power.

Preliminary sizing of the GHE system.

- Extend to other buildings and climates.
- Thermal storage!

CONCLUSIONS:

- Simulations combining heat transfer in the soil with pumping system above.
- Period of 20 years, commercial halltype building in cold climates.
- Piles length, spacing and performance.
- Shorter piles are more performing.
- Smaller initial extraction power.

Preliminary sizing of the GHE system.

- Extend to other buildings and climates.
- Thermal storage!
- More soil types with stratification.

CONCLUSIONS:

- Simulations combining heat transfer in the soil with pumping system above.
- Period of 20 years, commercial halltype building in cold climates.
- Piles length, spacing and performance.
- Shorter piles are more performing.
- Smaller initial extraction power.

Preliminary sizing of the GHE system.

- Extend to other buildings and climates.
- Thermal storage!
- More soil types with stratification.
- Validation with measurements.

CONCLUSIONS:

- Simulations combining heat transfer in the soil with pumping system above.
- Period of 20 years, commercial halltype building in cold climates.
- Piles length, spacing and performance.
- Shorter piles are more performing.
- Smaller initial extraction power.

<u>Preliminary sizing</u> of the GHE system.

- Extend to other buildings and climates.
- Thermal storage!
- More soil types with stratification.
- Validation with measurements.
- Theoretical cross check of results.

CONCLUSIONS:

- Simulations combining heat transfer in the soil with pumping system above.
- Period of 20 years, commercial halltype building in cold climates.
- Piles length, spacing and performance.
- Shorter piles are more performing.
- Smaller initial extraction power.

Preliminary sizing of the GHE system.

PERSPECTIVES:

- Extend to other buildings and climates.
- Thermal storage!
- More soil types with stratification.
- Validation with measurements.
- Theoretical cross check of results.

ALL OF THE ABOVE IS WORK IN PROGRESS

THANK YOU FOR YOUR ATTENTION!

Andrea Ferrantelli Department of Civil Engineering and Architecture Tallinn University of Technology

GEOTHERMAL PLANT SIZING GUIDE

- 1) Determine building design heat load and annual heating energy need: design heat load (design temperature -26°C) Q = 360 kW, annual energy need $E \sim 183$ MWh).
- 2) Size the heat pump evaporator: 180 kW for heat pump condenser, evaporator as Qevap = 140 kW.
- 3) Estimate total pile field length and condenser yield: assume 30m long piles, then <u>simulation results</u> give the specific yield per unit length E/L [kWh/m]. For 60 W/m we obtain 103 MWh for 6m pile step. 103 MWh<168 MWh (demand) -> <u>more piles or thermal storage</u>.

	step $3m$		step 4.5 m		step $6m$	
	15m	$30 \mathrm{m}$	15m	$30 \mathrm{m}$	15m	$30 \mathrm{m}$
evaporator sizing power, W/m	20	18	20	19		20
yield, kWh/m	21	20	22	22		21
ground area yield, kWh/m2a	34	62	14	27	-	20
demand covered by the heat pump	97%	90%	97%	96%		97%
evaporator sizing power, W/m	33	22	37	31	38	34
yield, kWh/m	37	25	41	35	41	37
ground area yield, kWh/m2a	57	77	26	43	19	35
demand covered by the heat pump	83%	56%	92%	76%	94%	84%
evaporator sizing power, W/m	38	24	47	35	50	40
yield, kWh/m	42	27	52	39	55	44
ground area yield, $kWh/m2a$	65	83	32	48	26	41
demand covered by the heat pump	63%	40%	77%	57%	83%	66%
_	yield, kWh/m ground area yield, kWh/m2a demand covered by the heat pump evaporator sizing power, W/m yield, kWh/m ground area yield, kWh/m2a demand covered by the heat pump evaporator sizing power, W/m yield, kWh/m ground area yield, kWh/m2a	evaporator sizing power, W/m 20 yield, kWh/m 21 ground area yield, kWh/m2a 34 demand covered by the heat pump 97% evaporator sizing power, W/m 33 yield, kWh/m 37 ground area yield, kWh/m2a 57 demand covered by the heat pump 83% evaporator sizing power, W/m 38 yield, kWh/m 42 ground area yield, kWh/m2a 65	temperature 15m 30m evaporator sizing power, W/m 20 18 yield, kWh/m 21 20 ground area yield, kWh/m2a 34 62 demand covered by the heat pump 97% 90% evaporator sizing power, W/m 33 22 ground area yield, kWh/m2a 57 77 demand covered by the heat pump 83% 56% evaporator sizing power, W/m 38 24 yield, kWh/m 42 27 ground area yield, kWh/m2a 65 83	temperature 15m 30m 15m evaporator sizing power, W/m 20 18 20 yield, kWh/m 21 20 22 ground area yield, kWh/m2a 34 62 14 demand covered by the heat pump 97% 90% 97% evaporator sizing power, W/m 33 22 37 yield, kWh/m 37 25 41 ground area yield, kWh/m2a 57 77 26 demand covered by the heat pump 83% 56% 92% evaporator sizing power, W/m 38 24 47 yield, kWh/m 42 27 52 ground area yield, kWh/m2a 65 83 32	temporator sizing power, W/m 15m 30m 15m 30m evaporator sizing power, W/m 20 18 20 19 yield, kWh/m 21 20 22 22 ground area yield, kWh/m2a 34 62 14 27 demand covered by the heat pump 97% 90% 97% 96% evaporator sizing power, W/m 33 22 37 31 ground area yield, kWh/m2a 57 77 26 43 demand covered by the heat pump 83% 56% 92% 76% evaporator sizing power, W/m 38 24 47 35 yield, kWh/m 42 27 52 39 ground area yield, kWh/m2a 65 83 32 48	temperature 15m 30m 15m 30m 15m evaporator sizing power, W/m 20 18 20 19 yield, kWh/m 21 20 22 22 ground area yield, kWh/m2a 34 62 14 27 demand covered by the heat pump 97% 90% 97% 96% evaporator sizing power, W/m 33 22 37 31 38 yield, kWh/m 37 25 41 35 41 ground area yield, kWh/m2a 57 77 26 43 19 demand covered by the heat pump 83% 56% 92% 76% 94% evaporator sizing power, W/m 38 24 47 35 50 yield, kWh/m 42 27 52 39 55 ground area yield, kWh/m2a 65 83 32 48 26