

PARAMETRIC STUDY FOR THE LONG TERM ENERGETIC PERFORMANCE OF GEOTHERMAL ENERGY PILES

Andrea Ferrantelli Department of Civil Engineering and Architecture Tallinn University of Technology

07.11.2019 1st Nordic ZEB+, Trondheim

MOTIVATION:

Energetic performance and renewable resources

MOTIVATION:

Energetic performance and renewable resources

 Energy piles (GHE): U-shaped heat exchangers inserted inside the foundation piles of buildings.

Bao, Xiaohua, et al. "Thermal properties of cement-based composites for geothermal energy applications." *Materials* 10.5 (2017): 462.

TALLINN UNIVERSITY OF TECHNOLOGY

MOTIVATION:

Energetic performance and renewable resources

- Energy piles (GHE): U-shaped heat exchangers inserted inside the foundation piles of buildings.
- Simulations often focus only on heat transfer in the <u>foundation</u> <u>soil</u>.

Bao, Xiaohua, et al. "Thermal properties of cement-based composites for geothermal energy applications." *Materials* 10.5 (2017): 462.

TALLINN UNIVERSITY OF TECHNOLOGY

MOTIVATION:

Energetic performance and renewable resources

- Energy piles (GHE): U-shaped heat exchangers inserted inside the foundation piles of buildings.
- Simulations often focus only on heat transfer in the <u>foundation</u> <u>soil</u>.
- A full parametric study <u>including</u> <u>the heat pump system above</u>.

Bao, Xiaohua, et al. "Thermal properties of cement-based composites for geothermal energy applications." *Materials* 10.5 (2017): 462.

METHOD

METHOD

 IDA-ICE model for a commercial hall-type building in Finland (Helsinki climate data ~5000 HDD w. Tb=20C), validated in [1].

[1] Fadejev J and Kurnitski J (2015), Energy and Buildings 106 23 – 34 ISSN 0378-7788

METHOD

- IDA-ICE model for a commercial hall-type building in Finland (Helsinki climate data ~5000 HDD w. Tb=20C), validated in [1].
- Simulations: 20 years. Many different building models depending on heat pump power, total length, specific heat extraction rate (W/m).

[1] Fadejev J and Kurnitski J (2015), Energy and Buildings 106 23 – 34 ISSN 0378-7788

METHOD

- IDA-ICE model for a commercial hall-type building in Finland (Helsinki climate data ~5000 HDD w. Tb=20C), validated in [1].
- Simulations: 20 years. Many different building models depending on heat pump power, total length, specific heat extraction rate (W/m).
- Soil type: <u>clay</u>. No stratification, <u>no thermal storage</u>.

[1] Fadejev J and Kurnitski J (2015), Energy and Buildings 106 23 – 34 ISSN 0378-7788

RESULTS

RESULTS

Technical parameters:

- Foundation piles: L=15m-30m
- Design heat load: 360 kW.
- Annual heating demand: 168 MWh.
- Spacing: 6m, 4.5m, 3m.

RESULTS

Technical parameters:

- Foundation piles: L=15m-30m
- Design heat load: 360 kW.
- Annual heating demand: 168 MWh.

TALLINN UNIVERSITY OF TECHNOLOGY

RESULTS

Technical parameters:

- Foundation piles: L=15m-30m
- Design heat load: 360 kW.
- Annual heating demand: 168 MWh.
- Spacing: 6m, 4.5m, 3m.

TALLINN UNIVERSITY OF TECHNOLOGY

Example: 200 W/m, 6m spacing, L=30m, Heat pump evaporator sized at ca 215 kW.

			step 3m		step 4.5m		step 6m	
			$15\mathrm{m}$	30 m	15m	30 m	15m	30 m
	$20 \mathrm{W/m}$	evaporator sizing power, W/m	20	18	20	19		20
		yield, kWh/m	21	20	22	22		21
Initial heat		ground area yield, kWh/m2a	34	62	14	27		20
		demand covered by the heat pump	97%	90%	97%	96%		97%
pump	40 W/m	evaporator sizing power, W/m	33	22	37	31	38	34
evaporator		yield, kWh/m	37	25	41	35	41	37
		ground area yield, kWh/m2a	57	77	26	43	19	35
Power		demand covered by the heat pump	83%	56%	92%	76%	94%	84%
	60 W/m	evaporator sizing power, W/m	38	24	47	35	50	40
[W/m]		yield, kWh/m	42	27	52	39	55	44
		ground area yield, kWh/m2a	65	83	32	48	26	41
		demand covered by the heat pump	63%	40%	77%	57%	83%	66%

(Blank column: oversized system)

TALLINN UNIVERSITY OF TECHNOLOGY

			step 3m		step 4.5m		step 6m	
			$15\mathrm{m}$	30 m	15m	30 m	15m	30m
	20 W/m	evaporator sizing power, W/m	20	18	20	19		20
		yield, kWh/m	21	20	22	22		21
Initial heat		ground area yield, kWh/m2a	34	62	14	27	_	20
		demand covered by the heat pump	97%	90%	97%	96%		97%
pump	40 W/m	evaporator sizing power, W/m	33	22	37	31	38	34
evaporator		yield, kWh/m	37	25	41	35	41	37
		ground area yield, kWh/m2a	57	77	26	43	19	35
Power		demand covered by the heat pump	83%	56%	92%	76%	94%	84%
	60 W/m	evaporator sizing power, W/m	38	24	47	35	50	40
[W/m]		yield, kWh/m	42	27	52	39	55	44
		ground area yield, kWh/m2a	65	83	32	48	26	41
		demand covered by the heat pump	63%	40%	77%	57%	83%	66%

(Blank column: oversized system)

TALLINN UNIVERSITY OF TECHNOLOGY

DISCUSSION

DISCUSSION

 Results for 20 years, pile field buried in clay, no thermal storage.

DISCUSSION

- Results for 20 years, pile field buried in clay, no thermal storage.
- 1. Energy performance <u>not linear</u> w.r.to the initial evaporator extraction power (W/m).

Evaporator power (solid) and condenser yield (dashed), L=30m

DISCUSSION

- Results for 20 years, pile field buried in clay, no thermal storage.
- 1. Energy performance <u>not linear</u> w.r.to the initial evaporator extraction power (W/m).
- 2. % demand covered is e.g. 97%, 83%, 63% resp. for 20, 40, 60 W/m.

DISCUSSION

- Results for 20 years, pile field buried in clay, no thermal storage.
- 1. Energy performance <u>not linear</u> w.r.to the initial evaporator extraction power (W/m).
- 2. % demand covered is e.g. 97%, 83%, 63% resp. for 20, 40, 60 W/m.
- 3. 15m long piles <u>performed better</u> than 30m long piles, due to floor heat loss.

Evaporator power (solid) and condenser yield (dashed),

Evaporator power (solid) and condenser yield (dashed), L=15m

DISCUSSION

- Results for 20 years, pile field buried in clay, no thermal storage.
- 1. Energy performance <u>not linear</u> w.r.to the initial evaporator extraction power (W/m).
- 2. % demand covered is e.g. 97%, 83%, 63% resp. for 20, 40, 60 W/m.
- 3. 15m long piles <u>performed better</u> than 30m long piles, due to floor heat loss.
- 4. A larger spacing is preferable.

Evaporator power (solid) and condenser yield (dashed),

Evaporator power (solid) and condenser yield (dashed), L=15m

DISCUSSION

- Results for 20 years, pile field buried in clay, no thermal storage.
- 1. Energy performance <u>not linear</u> w.r.to the initial evaporator extraction power (W/m).
- 2. % demand covered is e.g. 97%, 83%, 63% resp. for 20, 40, 60 W/m.
- 3. 15m long piles <u>performed better</u> than 30m long piles, due to floor heat loss.
- 4. A larger spacing is preferable.
- 5. Evaporator yield: 20<E<55 kWh/m per year.

Evaporator power (solid) and condenser yield (dashed),

Evaporator power (solid) and condenser yield (dashed), L=15m

CONCLUSIONS AND PERSPECTIVES

CONCLUSIONS AND PERSPECTIVES

CONCLUSIONS AND PERSPECTIVES

CONCLUSIONS:

 Simulations combining heat transfer in the soil with pumping system above.

CONCLUSIONS AND PERSPECTIVES

- Simulations combining heat transfer in the soil with pumping system above.
- Period of 20 years, commercial halltype building in cold climates.

CONCLUSIONS AND PERSPECTIVES

- Simulations combining heat transfer in the soil with pumping system above.
- Period of 20 years, commercial halltype building in cold climates.
- Piles length, spacing and performance.

CONCLUSIONS AND PERSPECTIVES

- Simulations combining heat transfer in the soil with pumping system above.
- Period of 20 years, commercial halltype building in cold climates.
- Piles length, spacing and performance.
- <u>Shorter piles</u> are more performing.

CONCLUSIONS AND PERSPECTIVES

- Simulations combining heat transfer in the soil with pumping system above.
- Period of 20 years, commercial halltype building in cold climates.
- Piles length, spacing and performance.
- <u>Shorter piles</u> are more performing.
- <u>Smaller initial extraction power</u>.

CONCLUSIONS AND PERSPECTIVES

- Preliminary sizing of the GHE system.
- Simulations combining heat transfer in the soil with pumping system above.
- Period of 20 years, commercial halltype building in cold climates.
- Piles length, spacing and performance.
- <u>Shorter piles</u> are more performing.
- <u>Smaller initial extraction power</u>.

CONCLUSIONS AND PERSPECTIVES

CONCLUSIONS:

- Preliminary sizing of the GHE system.
- Simulations combining heat transfer in the soil with pumping system above.
- Period of 20 years, commercial halltype building in cold climates.
- Piles length, spacing and performance.
- <u>Shorter piles</u> are more performing.
- <u>Smaller initial extraction power</u>.

CONCLUSIONS AND PERSPECTIVES

CONCLUSIONS:

- Simulations combining heat transfer in the soil with pumping system above.
- Period of 20 years, commercial halltype building in cold climates.
- Piles length, spacing and performance.
- <u>Shorter piles</u> are more performing.
- <u>Smaller initial extraction power</u>.

Preliminary sizing of the GHE system.

PERSPECTIVES:

• Extend to other buildings and climates.

CONCLUSIONS AND PERSPECTIVES

CONCLUSIONS:

- Simulations combining heat transfer in the soil with pumping system above.
- Period of 20 years, commercial halltype building in cold climates.
- Piles length, spacing and performance.
- <u>Shorter piles</u> are more performing.
- <u>Smaller initial extraction power</u>.

Preliminary sizing of the GHE system.

- Extend to other buildings and climates.
- Thermal storage!

CONCLUSIONS AND PERSPECTIVES

CONCLUSIONS:

- Simulations combining heat transfer in the soil with pumping system above.
- Period of 20 years, commercial halltype building in cold climates.
- Piles length, spacing and performance.
- <u>Shorter piles</u> are more performing.
- <u>Smaller initial extraction power</u>.

Preliminary sizing of the GHE system.

- Extend to other buildings and climates.
- Thermal storage!
- More soil types with stratification.

CONCLUSIONS AND PERSPECTIVES

CONCLUSIONS:

- Simulations combining heat transfer in the soil with pumping system above.
- Period of 20 years, commercial halltype building in cold climates.
- Piles length, spacing and performance.
- <u>Shorter piles</u> are more performing.
- <u>Smaller initial extraction power</u>.

Preliminary sizing of the GHE system.

- Extend to other buildings and climates.
- Thermal storage!
- More soil types with stratification.
- Validation with measurements.

CONCLUSIONS AND PERSPECTIVES

CONCLUSIONS:

- Simulations combining heat transfer in the soil with pumping system above.
- Period of 20 years, commercial halltype building in cold climates.
- Piles length, spacing and performance.
- <u>Shorter piles</u> are more performing.
- <u>Smaller initial extraction power</u>.

Preliminary sizing of the GHE system.

- Extend to other buildings and climates.
- Thermal storage!
- More soil types with stratification.
- Validation with measurements.
- Theoretical cross check of results.

CONCLUSIONS AND PERSPECTIVES

CONCLUSIONS:

- Simulations combining heat transfer in the soil with pumping system above.
- Period of 20 years, commercial halltype building in cold climates.
- Piles length, spacing and performance.
- <u>Shorter piles</u> are more performing.
- <u>Smaller initial extraction power</u>.

Preliminary sizing of the GHE system.

PERSPECTIVES:

- Extend to other buildings and climates.
- Thermal storage!
- More soil types with stratification.
- Validation with measurements.
- Theoretical cross check of results.

ALL OF THE ABOVE IS WORK IN PROGRESS

THANK YOU FOR YOUR ATTENTION!

Andrea Ferrantelli Department of Civil Engineering and Architecture Tallinn University of Technology

07.11.2019 1st Nordic ZEB+, Trondheim

GEOTHERMAL PLANT SIZING GUIDE

- Determine building design heat load and annual heating energy need: design heat load (design temperature -26°C) Q = 360 kW, annual energy need E ~183 MWh).
- Size the heat pump evaporator: 180 kW for heat pump condenser, evaporator as Qevap = 140 kW.
- 3) Estimate total pile field length and condenser yield: assume 30m long piles, then <u>simulation results</u> give the specific yield per unit length E/L [kWh/m]. For 60 W/m we obtain 103 MWh for 6m pile step. 103 MWh<168 MWh (demand) -> more piles or thermal storage.

		step 3m		step $4.5m$		step 6m	
		15m	30m	15m	30m	15m	30m
20 W/m	evaporator sizing power, W/m	20	18	20	19	-	20
	yield, kWh/m	21	20	22	22	-	21
	ground area yield, kWh/m2a	34	62	14	27	-	20
	demand covered by the heat pump	97%	90%	97%	96%	-	97%
40 W/m	evaporator sizing power, W/m	33	22	37	31	38	34
	yield, kWh/m	37	25	41	35	41	37
	ground area yield, kWh/m $2a$	57	77	26	43	19	35
	demand covered by the heat pump	83%	56%	92%	76%	94%	84%
60 W/m	evaporator sizing power, W/m	38	24	47	35	50	40
	yield, kWh/m	42	27	52	39	55	44
	ground area yield, kWh/m2a	65	83	32	48	26	41
	demand covered by the heat pump	63%	40%	77%	57%	83%	66%