GEO-SOLAR DISTRICT HEATING

- Lessons Learnt from a not Realised Project

Dr. Dietrich Schmidt - Fraunhofer IEE, Kassel/Germany

documenta Stadt

U N I K A S S E L

AGFW

The Project

Development of an innovative heat supply concept for the housing area "Zum Feldlager" in Kassel/Germany

The Project

Development of an innovative heat supply concept for the housing area "Zum Feldlager" in Kassel/Germany

Boundaries for the project:

- **"Future save**" and innovative development, affordable prices
- Minimized primary energy use, reduction of CO₂ & no fine dust emissions, efficient energy use, integration of renewable energy sources.
- 130 buildings in future German building Standard (approx. 45 kWh/m²a)
- Pre-study for the selection of technology sets

Analyzed Supply Variants

- De-central air/water-heat pumps, domestic hot water preparation (DHW) supported by solar thermal systems
- De-central gas-condensing boiler with solar thermal systems for domestic hot water preparation (DHW) (Reference)
- De-central water/water heat pumps connected to cold DH system (**20°C**) in combination with solar thermal systems and heating rod for DHW
- Central heat supply via heat pump and low temperature DH (40°C) in combination with de-central solar thermal systems and heating rod for DHW
- Gas-CHP-heat pump system with CHP unit and electric heat pump in combination with large heat storage. Operated with natural-gas or bio-gas

Building

Ω

Assessment of the Variants - Parameters and Weighting Factors

Results from the Pre-Study

Chosen Variant (Geo-Solar District Heating)

Reference (Gas Condensing Boiler)

- Primary energy demand 7.5%
 - Simplicity of contracts 5%

Annual heating costs 50%

Results - Ecological Assessment

Results - Ecological Assessment

Results - Economical Assessment

Annual heating costs for end user

Cost estimation includes investment-/capital- , operational-, maintenance- and personal costs. 15 years for technall equipment, 30 years for infrastructure

Geo-Solar District Heating - Chosen Supply Variant

Geo-solar District Heating - Chosen Supply Variant

Summary

Gefördert durch:

Renewable heating energy supply

Solar heat, geothermal heat, heat pump, low temperature district heating for the first time connected in a large city neighborhood

More cost efficient than conventional supply

Today already approx. 5% cheaper compared to common technology and independent from rising oil and gas prices; incl. higher energy security

- Transferable to most new housing area developments
- Intelligent combination of proven technologies
 Integration of innovative DH & HVAC technologies

⇒ <u>BUT:</u>

The project has *not been* realized because of time constrains, the drilling permit for the BHE took too long

- Innovative projects have special boundaries (beyond economics)
- Good communication crucial

aufgrund eines Beschlusses des Deutschen Bundestages

Thank you for your attention!

Tekn. Dr. Dietrich Schmidt

Head of Department Heat & Power Systems Fraunhofer Institute for Energy Economics and Energy System Technology IEE Mail: dietrich.schmidt@iee.fraunhofer.de Phone: +49 561 804-1871 http://www.iee.fraunhofer.de

