

CONVERTING KNOWLEDGE INTO VALUE FOR OVER 30 YEARS Since 1986

....

POLYSOL – Thermal and electrical performance assessment of a cost-effective polygeneration system

1st Nordic Conference on Zero Emission and Plus Energy Buildings

Towards low carbon built environments

J. Soares, B. Shahzamanian, S. Varga, A. Palmero-Marrero, A. C. Oliveira

CONTENTS

- Objectives;
- Existing Test and Demonstration Facility;
- Methodology numerical model;
- Results:
 - Yearly thermal performance;
 - Yearly electrical performance;
- Conclusions;
- Acknowledgements;

Since 1986

Objectives

POLYSOL – Development of a polygeneration solar system for Zero Energy Building

The objective of POLYSOL is to develop and evaluate, both numerically and experimentally, a polygeneration system satisfying the electricity, cooling and heating needs of buildings.

Specific objective: Identification of thermal and electric energy consumption of the test facility throughout the year

Existing Test and Demonstration Facility (TDF)

Cinegi driving science & innovation

General layout of the TDF

Research methodology

Numerical model for thermal load assessment on the building

Yearly thermal performance

[©] INEGI all rights reserved

Yearly thermal performance

Yearly electrical performance

Cinegi driving science & innovation

Yearly electrical performance

Conclusions

 $Q_{solar,anual} \approx 16 \text{ MWh}_{th}$ (about 6 times the demand); $Q_{demand, cooling} \approx 64 \%$ Shortages on the hourly and daily levels:

- highest cumulative thermal energy deficit (19 kWh_{th}) for the 14th and 15th of February;
- TES will be used. About 37 kWh_{th} excess on the 13th of February;

```
W_{elect,demand} \approx 1.9 \, Mwh_{el};
```

- $W_{elect,PV} \approx about 1.6/1.7$ times the demand (7 and 8 PV modules, respectively); Shortages on the hourly and daily levels:
- highest cumulative electrical energy deficit (11 kWh_{th}) for the 1st and 3rd of January;
- peak shortage $\approx 0.8 \text{ kW}_{el}$ occurs in summer ;

Szabolcs Varga

szabolcs@fe.up.pt

INSTITUTE OF SCIENCE AND INNOVATION IN MECHANICAL AND INDUSTRIAL ENGINEERING

www.inegi.up.pt

f in У 🖸

CONVERTING KNOWLEDGE INTO VALUE FOR OVER 30 YEARS

The authors gratefully acknowledge the financial support of **"Fundação para a Ciência e Tecnologia" (FCT – Portugal)**, through the research project POCI-01-0145-FEDER-030223 ("Development of a polygeneration solar system for Zero Energy Building").

Since 1986

....