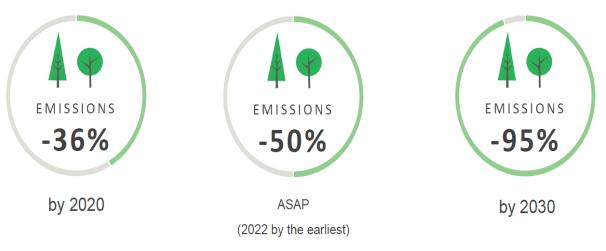


LESSONS LEARNT FROM THE DESIGN AND CONSTRUCTION STRATEGIES OF TWO NORWEGIAN LOW EMISSION CONSTRUCTION SITES

Selamawit Mamo Fufa, Marianne Kjendseth Wiik, Sofie Mellegård and Inger Andresen Selamawit.fufa@sintef.no

Background

- Construction sites are a major source of greenhouse gas emissions
 - 5-10% of total emissions in cities¹
 - In Oslo, construction sites generate ca. 7% of total emissions²



¹https://www.klimaoslo.no/wp-content/uploads/sites/88/2019/06/Perspectives-on-zero-emission-construction.pdf

²https://www.smartcitiesworld.net/news/news/cities-commit-to-clean-construction-to-cut-building-emissions-by-up-to-44-per-cent--4665

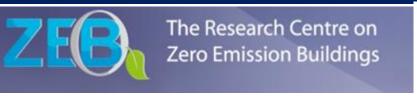
Background

Main pledges and targe	ts Climat	
Ratified	Yes	
2030 unconditional target(s)	40% below 1990 by 2030	
	[44% below 2010 by 2030]	
2030 conditional target(s)	Carbon neutrality	
LONG-TERM GOAL(S) Long-term goal(s)	Low carbon society by 2050	
r org/countries/porway/	Reduction in GHG emissions by 80–95% from 1990 reference	
	2030 unconditional target(s) 2030 conditional target(s)	

Reference:

http://www.procuraplus.org/fileadmin/user_upload/Activities_files/Events/Oslo_2018/1__Green_Oslo_Climate_Budget_ICLEI _Procura_Seminar_22032018.pdf

Objective


- To present the lessons learnt from the two Norwegian construction sites
 - Campus Evenstad in Hedmark
 - Lia nursery school in Oslo

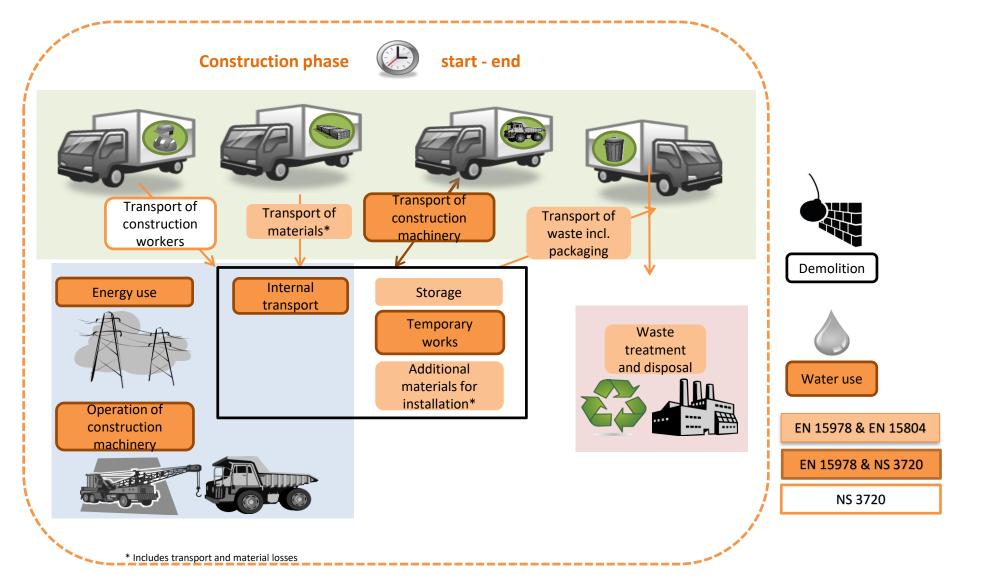
Lia nursery school, Emission free construction site- preproject funded by Regional research fund

Campus Evenstad, ZEB pilot building

- Eivind Selvig, Marianne Kjendseth Wiik, Åse Lekang Sørensen. Campus Evenstad - Jakten på nullutslippsbygget ZEB-COM. 2017.

7

Wiik MK, Sørensen ÅL, Selvig E, Cervenka Z, Fufa SM, Andresen I. ZEB Pilot Campus Evenstad. Administration and educational building. As-built report. The Research Centre on Zero Emission Buildings. ZEB Project report no 36.; 2017
Fufa, S. M., M. K. Wiik and I. Andresen (2019). Estimated and actual construction inventory data in embodied GHG emission calculations for a Norwegian zero emission building (ZEB) construction site. Smart Innovation, Systems and Technologies P. Kaparaju, R. J. Howlett, J. Littlewood, C. Ekanyake and L. Vlacic. Switzerland, Springer Nature Switzerland.


- Fufa, S. M. (2018). GHG emission calculation from construction phase of Lia barnehage. SINTEF notes no. 29. ISBN:978-82-536-1586-8
 - Fufa, S. M., S. Mellegård, M. K. Wiik, C. Flyen, G. Hasle, L. Bach, P. Gonzalez, E. S. Løe and F. Idsøe (2018). Utslippsfrie byggeplasser State of the art. Veileder for innovative anskaffelsesprosesser. SINTEF Fag rapport nr. 49. ISBN:978-82-536-1589-9.

Definition

 Emission free construction site: is a construction site that does not have any direct or indirect greenhouse gas (GHG) emissions from its construction activities

- ✓ Electric or hydrogen-powered construction machinery, electricity or district heating for temporary heating and drying, use of zero emission vehicle transport to, from, and at building sites
- Fossil free construction site: is a construction site that does not use any fossil fuels in any of its on-site construction activities.
 - ✓ Bioenergy and biofuels (i.e. HVO or wood pellets) or alternative renewable energy resources such as electricity or hydrogen.

System boundary

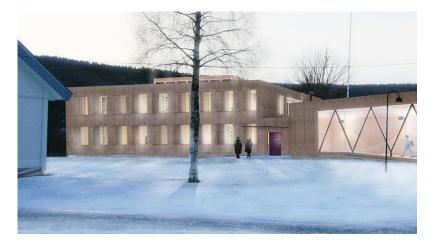
Standards: EN15978, on environmental performance of construction works (orange text box & orange text box with brown frames) EN15804, on rules for environmental product declarations of construction products (orange text box) prNS3720, Method for greenhouse gas calculations for buildings (orange text box; orange text box with brown frames & white text box with brown frames)

Case studies

Campus Evenstad: administration and educational building

- Located in Hedmark, Norway
- 1141 m² BRA
- ZEB-COM
- Consists of a solid wood construction, wood fibre insulation, and timber cladding
- 15.12.2015 22.12.2016 (374 days)

○ Lia nursery school


- Located in Oslo (Harald Sohlbergs vei 21)
- 1600 m² BRA
- Plus building, BREEAM-NOR very good; fossil free
- Prefabricated timber elements, hollow concrete slab flooring, and light weight concrete roof elements
- 10th April 2017 27th November 2017 (166 days)

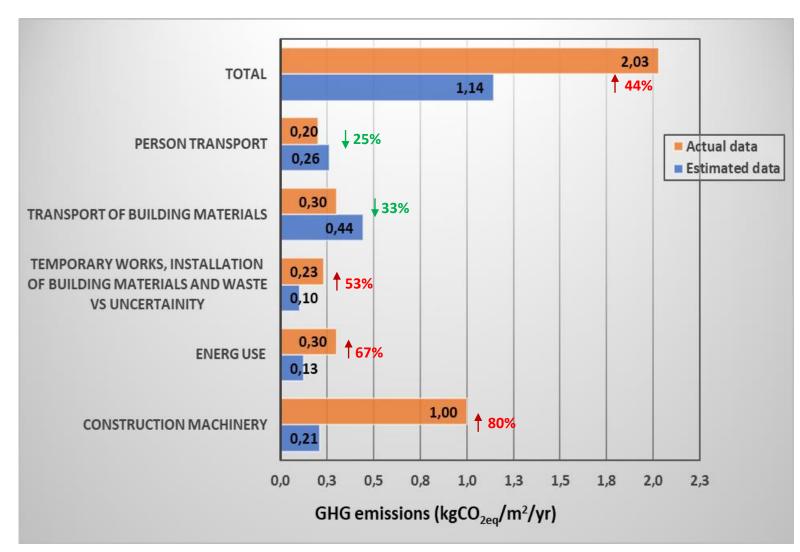
Early planning

More time and resources were used in the early planning of the construction sites

- Ambition, definition, concepts, challenges and opportunities were discussed
- Good transport logistics planning to, from and within the construction site
 - urban setting (lack of space, storage area and close by school)
- Shorter construction period (project being completed one month before schedule) and

- Emission reduction measures were discussed and evaluated
 - GHG emission calculations
- Transport logistics plan was implemented to avoid driving empty or partial loads
- 33% decrease in emissions from person transport and a 25% decrease in emissions from the transport of building materials

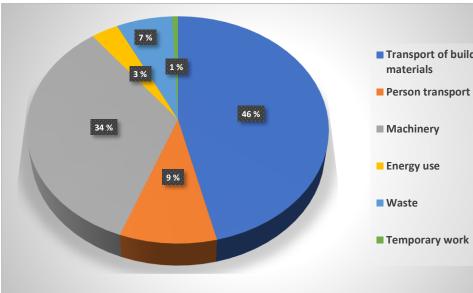
Construction methods and energy sources



- Prefabricated construction solutions (shorter construction period)
- Locally produced elements
- Fossil free alternative energy sources
 - Electricity (from the electricity grid)
 - Lack of electric machineries
 - Construction machineries delivered with tank full of diesel

- Low carbon materials
 - Solid wood construction system with wood fibre insulation and timber cladding
- Locally available materials
- Fossil free alternative energy sources
 - Electricity from the electricity grid and CHP
 - Uncertainties in the use of biodiesel
 - lack of technological developments of construction machinery

GHG emissions



• The estimated results were used to evaluate, plan and reduce emissions

- Using locally produced building materials
- Restructuring deliveries to cut trips
- Emissions from construction machinery was largely underestimated
 - Lack of technology
- Reducing energy consumption

GHG emission results from Campus Evenstad using estimated and actual data

GHG emissions

Transport of building materials
Person transport
Machinery
Energy use
Waste

GHG emission results from Lia nursery school actual data

	Campus Evenstad		Lia nursery school
Construction site activities	Design phase	As-built phase	-
	(kgCO _{2eq} /m²/yr)	(kgCO _{zeq} /m²/yr)	(kgCO _{2eq} /m²/yr)
Transport of building materials	0,44	0,30	0,55
Installation of building materials	0,00	0,20	N/A
Construction machinery	0,21	0,96	0,4
Energy use	0,13	0,34	0,04
Person transport	0,26	0,21	0,11
Temporary work	0,00	0,02	0,01
Waste	0,00	0,01	0,08
Uncertainity	0,09	N/A	N/A
Sum (kgCO _{zeq} /m²/yr)	1,14	2,03	1,19

Conclusions

 \odot Achieving a fossil or emission free construction site

- Challenging
 - ✓ Lack of knowledge and experience amongst stakeholders, high costs, lack of access to fossil-free or emission-free solutions and use of new technologies
- Achievable through
 - \checkmark Good planning in the early phase, with consideration of external factors
 - ✓ Collaboration between all involved stakeholders
 - \checkmark Clear definition of ambitions and requirements
 - ✓ Setting transparent, measurable and comparable requirements in the procurement process (enable the building industry to develop and implement new and innovative emission free solutions)
 - ✓ Use of quantitative evaluations methods (e.g. LCA methodologies) to evaluate the actual emission reductions

Teknologi for et bedre samfunn