
Defrosting and Frost Protection Measurements of Heat Recovery in Cold Climate

Dennis Johansson Åsa Wahlström Mats Dahlblom

Building Services – LTH Lund University

Background

- Ventilation losses are an increasing part of all losses
 - Heat recovery is a solution
 - Depends on efficiency of heat recovery
- Simulated efficiencies may often over-estimate benefit
- Frosting or frosting protection may often be a major issue

Frosting protection

Protection

- Blocking or turning off the supply air.
- Bypassing the supply air
- Pre-heating supply air or heating the extract air.
- Switching airflow direction or switching between serial heat exchangers.

Detection

- Exhaust temperature
- Exhaust temperature and condensation
- Pressure drop
- Visual ice

Aim

- Measurements in 6 air handling units with heat recovery
- Simplified calculations
- Judge the influence from frosting

Method

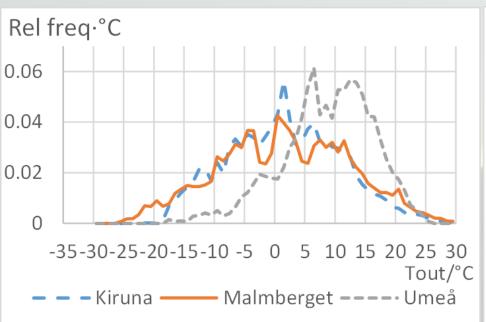
- Measurements during the winter 2018-2019 in four units, 2012 in two units
- Kiruna, Malmberget, Umeå

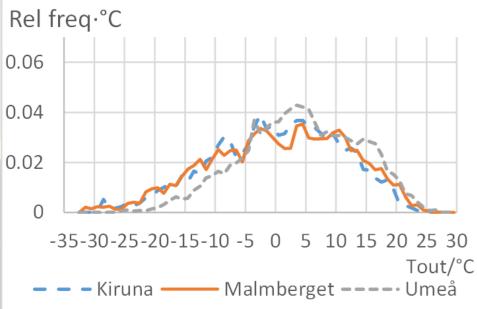
•
$$\eta s = \frac{Tvvx - Tout}{Tet - Tout}$$
; $\eta e = \frac{Tet - Tex}{Tet - Tout}$

- Simulations
 - Tex<0°C
 - Tex<0°C AND condensation, Tex<Texsat — Tsa=20°C: Tet=22°C: vs=1: 2: 4 g/m³

134-20 0, 101-22 0, v3-1, 2, 4 g/111				
Abr	City	Heat exchanger	Size	Notes
A	Kiruna	Coil	Apartment block	
В	Kiruna	Rotor	Apartment	Not possible to measure <u>Tvvx</u>
C	Kiruna	Plate	Apartment block	
D	Malmberget	Rotor	4 apartments	
E	<u>Umeå</u>	Plate	Apartment block	
F	<u>Umeå</u>	Plate	Apartment block	

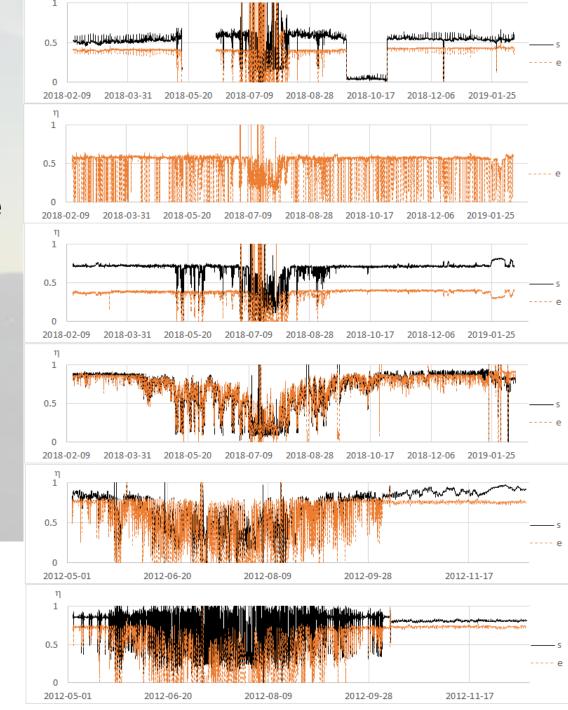
Method

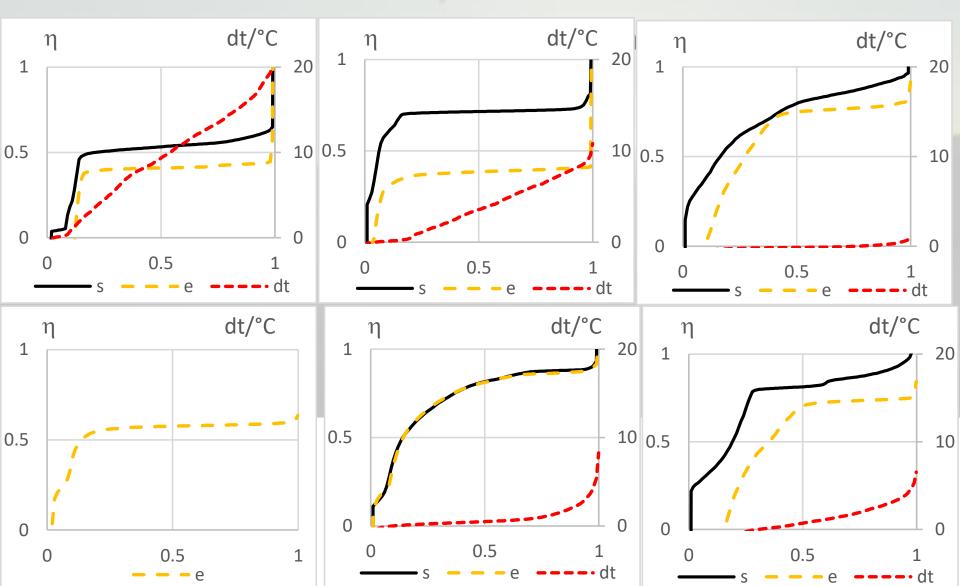

- Measurements during the winter period 2018-2019 in four units, 2012 in two units
 - Kiruna, Malmberget and Umeå


$$-\eta s = \frac{Tvvx - Tout}{Tet - Tout}; \eta e = \frac{Tet - Tex}{Tet - Tout}$$

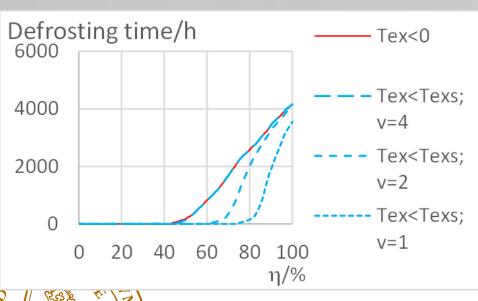
- Simulations
 - Tex<0°C</p>
 - Tex<0°C AND condensation,
 Tex<Texsat
 - Tsa=20°C; Tet=22°C; vs=1;2;4 g/m³

Outdoor climate




Results

 Temperature efficiencies over time




Duration of temperature efficiency and added heating

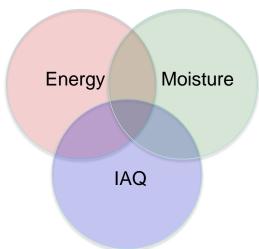
Temperature efficiency and added temperature

- Kiruna Meteonorm outdoor climate
- Tet=22°C; Tsa=18°C
- Constant moisture supply

Conclusions

- Measurements
 - Rather low temperature efficiency in some units
 - Not much frosting conditions occurred in the measurements
 - Imbalance a probable reason for low temperature efficiencies – first priority to check for

Simulations


- High moisture supply (indoor vapour content minus outdoor vapour content) is equivalent to just detect subzero temperatures in exhaust air
- With low moisture supply there is not very many hours of frosting conditions
- Future simulations with varying moisture supply and other parameters
 - Measurements in colder and balanced conditions
 - Problems exist of frozen rotors

Defrosting and Frost Protection Measurements of Heat Recovery in Cold Climate

Dennis Johansson Åsa Wahlström Mats Dahlblom

Building Services – LTH Lund University

