() SINTEF

HIGH-PERFORMANCE INSULATION MATERIALS

- Realistic design values for use in energy-efficient buildings

Malin Sletnes

A part of the SuperIsol research project (Norweigan Research Council, ENERGIX)

The SuperIsol research project

New system solutions for superinsulation in Norwegian buildings

SINTEF

Roof-top terrace with aerogel insulation

🖊 45 kPa

Can the aerogel withstand this load?

Compressive stress at 10 % deformation

Compressive stress at 10 % deformation

SINTEF

5

Declared value is subject to interpretation

Knowledge of the material, and its compression behaviour beyond just the declared value is important in a design process.

SINTEF

6

Knowledge from the stress-strain curve

- Aerogel insulation blankets will not fracture under normally occurring loads
- There will be some deformation
- How will it affect thermal conductivity?

Aerogel insulation blankets

Thermal conductivity (λ) as a function of compressive stress for aerogel insulation

() SINTEF

Heat flow meter measurement

() SINTEF

Using the nominal thickness to calculate more realistic design values for thermal conductivity

Questions?

Teknologi for et bedre samfunn