

LATENT HEAT STORAGE FOR CENTRALIZED HEATING SYSTEM IN A ZEB LIVING LABORATORY: INTEGRATION AND DESIGN

1

Alexis SEVAULT¹, Fabian BØHMER², Erling NÆSS², Liang WANG¹ ¹SINTEF Energy Research // ²NTNU

2019-11-07

SINTEF Energy Research

Facing a varying heat demand in buildings...

...and a correspondingly varying electricity price

-> Heat storage enables peak shaving

ZEB Lab:

Opportunities and constraints for heat storage

Heat demand	Energy system	Electricity sources	Heat sources	Environment
High daily variations	Centralised heating system (space heating, hot domestic	 Power grid Solar energy (roof) 	 Heat pump District heating Low- 	 Low- or zero- emissions components Low impact
Quick thermal response	Water and Centralised active heat storage	Optimized self- consumption	temperature Price-driven control strategy	Environment- friendly + Compact

ZEB Lab:

Opportunities and constraints for heat storage

Heat storage using PCM				
Tank volume: 5 m³	Total weight: 6 tons			
Heat storage capacity: 200 kWh	PCM: Bio-based wax			

2-3 days of peak heat demands of 8-15 kW

Implementation with financial support granted by ENOVA: 1.3 MNOK

Max. required capacity for heating system when heat storage operates: **14 kW instead of 24 kW**

O SINTEF

Measured PCM melting temperature range and peak [°C]	35 – 39 (36.5)
Measured PCM solidification temperature range and peak [°C]	33 – 35.5 (34.5)
Measured PCM latent heat of fusion and crystallisation [kJ/kg]	198.6 // 196.4
PCM density [kg/m ³]	957 (@32 °C) // 819 (@75 °C)
PCM thermal conductivity [W/(m.K)]	0.24
PCM specific heat capacity (solid // liquid) [kJ/(kg.K)]	2.3 // 1.4
PCM degradation temperature [°C]	> 50
Total theoretical heat storage capacity [from 30 to 40 °C] [kWh]	Ca. 200
Ratio of latent heat to total heat storage capacity	90 %

Contact: Alexis Sevault

Latent Heat Storage unit

DEV 2013 DSC at 1K/ min scanning rate

Selected PCM:

Bio-based wax - Crodatherm 37

CRODA

Practical test with larger mass

Based on plate-and-tube HX with 300 kWh heat storage capacity

Ref: Sevault A., et al.; Latent heat storage for centralized heating system in a ZEB living laboratory: integration and design, in press, Proc. of Nordic ZEB+ Conference, Norway, 2019 Influence of fin pitch with constant mass flow rate of water of 2 kg/s

- Left: Temperature of HTF at inlet and outlet and average PCM temperature
- Right: PCM liquid fraction and heat flow from PCM to HTF

Conclusions

ZEB Laboratory https://zeblab.no/

Ideal case for heat storage using PCM Peak shaving using 4 operation modus LHS unit is in construction and PCM is delivered Modelling of heat transfer rates matches heat demand profiles Installation of LHS unit and first tests planned in Spring 2020

LHS = Latent Heat Storage

Thank you for your attention!

Technology for a better society

Contact: Alexis Sevault

<u>Alexis.Sevault@sintef.no</u> @alexisSevault