

Facing a varying heat demand in buildings...

...and a correspondingly varying electricity price

ZEB Lab:

Opportunities and constraints for heat storage

Heat demand

High daily variations

Quick thermal response

Energy system

Centralised
heating system
(space heating,
hot domestic
water and
Centralised active

ntralised active heat storage

Electricity sources

- Power grid
- Solar energy (roof)

Optimized selfconsumption

Heat sources

- Heat pump
- District heating
- Lowtemperature

Price-driven control strategy

Environment

- Low- or zeroemissions components
- Low impact

friendly +
Compact

ZEB Lab:

Opportunities and constraints for heat storage

Heat storage using Phase Change Materials (PCM)

Quick thermal response

Centralised active heat storage

Optimized selfconsumption Price-driven control strategy

Advanced control strategies

friendly +
Compact

Heat storage using PCM

Tank volume: **5 m³**

Total weight: 6 tons

Heat storage capacity: 200 kWh

PCM: **Bio-based wax**

2-3 days of peak heat demands of 8-15 kW

Implementation with financial support granted by **ENOVA: 1.3 MNOK**

Max. required capacity for heating system when heat storage operates:

14 kW instead of 24 kW

NTNU

Charge from heat pump

Charge from district heating

Measured PCM melting temperature range and peak [°C]	35 – 39 (36.5)
Measured PCM solidification temperature range and peak [°C]	33 – 35.5 (34.5)
Measured PCM latent heat of fusion and crystallisation [kJ/kg]	198.6 // 196.4
PCM density [kg/m ³]	957 (@32 °C) // 819 (@75 °C)
PCM thermal conductivity [W/(m.K)]	0.24
PCM specific heat capacity (solid // liquid) [kJ/(kg.K)]	2.3 // 1.4
PCM degradation temperature [°C]	> 50
Total theoretical heat storage capacity [from 30 to 40 °C] [kWh]	Ca. 200
Ratio of latent heat to total heat storage capacity	90 %

Latent Heat Storage unit

Height: 1.5 m

Width: **1.4 m**

Length: **2.25 m**

4 times more compact

than hot water storage

Latent Heat Storage unit LHS1

Selected PCM:

Bio-based wax - Crodatherm 37

CRODA

DEV 2013 DSC at 1K/ min scanning rate

Thermogravimetric
Analysis – DSC
10 melting/solid. cycles

Selected PCM:

Bio-based wax - Crodatherm 37

CRODA

Practical test with larger mass

Based on plate-and-tube HX with 300 kWh heat storage capacity

Ref: Sevault A., et al.; Latent heat storage for centralized heating system in a ZEB living laboratory: integration and design, in press, Proc. of Nordic ZEB+ Conference, Norway, 2019

Influence of fin pitch with constant mass flow rate of water of 2 kg/s

- Left: Temperature of HTF at inlet and outlet and average PCM temperature
- Right: PCM liquid fraction and heat flow from PCM to HTF

Time [h]

Time [h]

HTF = Heat transfer fluid

Conclusions

Ideal case for heat storage using PCM

Peak shaving using 4 operation modus

LHS unit is in construction and PCM is delivered

Modelling of heat transfer rates matches heat demand profiles

Installation of LHS unit and first tests planned in Spring 2020

Thank you for your attention!

Technology for a better society

Contact: Alexis Sevault

Alexis.Sevault@sintef.no @alexisSevault