

Review of HVAC strategies for energy renovation of detached houses towards nZEB in cold climates

Vegard Heide, PhD student, <u>vegard.heide@ntnu.no</u> Laurent Georges, NTNU Anne Gunnarshaug Lien, SINTEF Hans Martin Mathisen, NTNU

OPPTRE Energy upgrading of wooden dwellings to nearly zero energy level

Energy upgrading of wooden dwellings to OPPTRE Energy upgrading of woo nearly zero energy level

http://opptre.no/

- WP3 on heating, ventilation and energy generation
- Architecture competition will ٠ develop design proposals for 5 case houses
- **SINTEF O**NTNU •

isola A HUNTON **VELUX**[®] SYSTEMHUS MESTERHUS :RATIO **ENOVA** BEDRE INNEKLIMA

Detached houses in Norway

- Limited sun in winter
- Cold mild wet
- Wood, lightweight,
- Built 1950 90
- Electric space heating, little hydronic
- Peak heating from woodstoves

Systemhus-catalogue: «Alstad»

Ventilation

- More airtight after renovation
- 60% of renovations make no changes to ventilation
- Only 9% install balanced mechanical ventilation (Bjørnstad 2015)

Need solutions simple and affordable enough to actually be implemented

Ambitious energy renovation

- Few projects monitored and analyzed
- Few studies on HVAC systems
- Mostly simulation-based

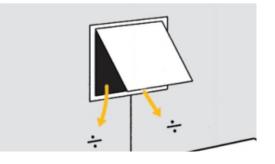
Overhalla Moltemyr Isterdalen SEOPP Bergen SEOPP Oslo

Photo: Jiri Havran

Balanced ventilation with heat recovery

- + Heat recovery
- + IAQ: stable and predictable air change, filtering
- + Thermal comfort: prehat supply air
- + Retrofitting ducts
- ÷ Costs

Kilde:

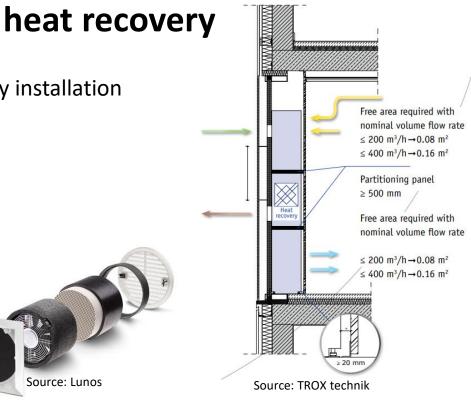


Ventilation solutions (simple, affordable?)

- Single room ventilators with heat recovery
- Natural ventilation
- Hybrid; window ventilated bedroom

Challenges

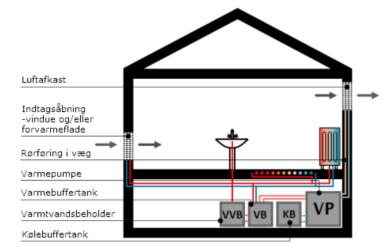
- Heat recovery
- Cold draught (no problem in bedrooms)
- Stable and predictable air change

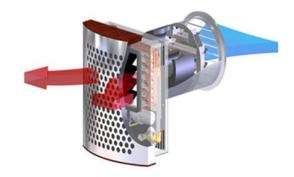


Vertical unit, vertical section

Single room ventilators with heat recovery

- + No ductwork: low fan consumption, easy installation
- + Heat recovery (efficiency?)
- ÷ Noise
- ÷ Crude filtering
- + Sensitive to pressure; wind, stack

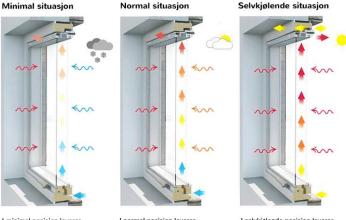



Exhaust air heat pump

- Heat to DHW, or also hydronic space heating
- 4-6 kW heating capacity: need good insulation level.
- Challenge: Cold supply air

Source: energiteknologi.dk, EUDP

EAHP had almost as good energy performance as balanced ventilation in a comparison by Gustafsson (2014). This was a renovated semi-detached house, with insulation level of the EnerPHit-standard, in Stockholm climate.


Ventilated window

- Combine with EAHP
- Preheating of 2-5°C at typical airflow rates, most at low outdoor temp
- + Increases heat loss from window

Korpåsen project, Oslo

o Photo: Linje Arkitektur AS

I minimal posisjon leverer vinduet en svak, men konstant forvarmet luftstrøm. SOURCE: SESNOR I normal posisjon leverer vinduet optimal forvarmet friskluftforsyning til bygningen. I selvkjølende posisjon leverer vinduet frisk uteluft, direkte utenfra, og luftstrømmen kjøler vinduene.

Energioppgradering av småhus i tre

til nesten nullenerginivå

Ventilation radiator

- Allows lower water temperature (35-40) than ordinary radiator (Jin 2017)
- + Need hydronic heating system

In highly-insulated houses, cold draft can occur when the outdoor temperature is near the balance temperature of the house: as the radiators are not heating, supply air will not be preheated.

Source: Purmo

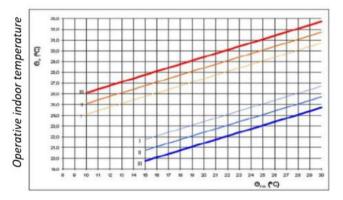
Cool bedrooms

Reports of open windows and reduced energy performance in highly insulated houses, due to warmer bedrooms than occupants prefer. Why, what is new?

- Balanced cascade ventilation
- Higher bathroom temperature
- Reduced thermal loss through envelope
- People are expected **not** to open windows

Also after renovation?

Klinski reported open bedroom windows in a renovated house where balanced ventilation has been installed.



Cool bedrooms - expanded comfort zone

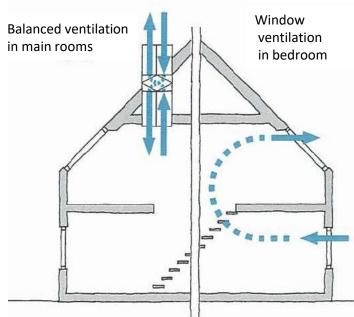
Special situation under a winter down duvet:

- Extreme Clo (10?)
- Outside scope of comfort models.
- No draught problem.

Exponentially weighted mean outdoor temperature

Source: EN ISO 15251

Cool bedrooms


Solutions?

Proposed adjustments to one-zone balanced ventilation:

- Setpoint supply air (Georges)
- Bypass sypply air (Berge)
- Supply and exhaust in bedroom (Selvnes)
- Automatic reduction of supply air to bedroom when window is opened

Investigate:

- Exhaust air heat pump.
- Single room MVHR
- Window ventilated bedrooms, MVHR in other rooms (differentiated ventilation?)

Differences in Scandinavia

In Sweden and Finland:

- More hydronic heating
- More exhaust air heat pumps

For many years EAHP were installed in 90% of all new built detached houses in Sweden.

Norwegian building code focuses on *net energy demand* (*neglecting the heating system efficiency*), so only part of the captured energy is accounted for. The Swedish code counts *delivered energy* and thus rewards the heat captured by the EAHP.

Ventilation air flow requirements more strictly specified for different rooms in Norway.

Decision table Qualitative assessment for planning process	Energy-efficiency	Investment	Need hydronic	Space for technical	Need ducts	Noise	Filtering	Air quality	Temperature-Zoning	Cold draft?	Occupant sensitive
Balanced ventilation	+ +	• •		· ·	$\frac{\cdot}{\cdot}$?	+		·ŀ·		
Decentralized balanced ventilation	+	÷				÷÷	?		+		
Balanced.ventilation + window ventilation bedroom	+	· ·		· ·	÷		?		+		$\frac{\cdot}{\cdot}$
Decentral.bal.ventilation + window ventilated bedroom	+	+					?		+		$\frac{\cdot}{\cdot}$
Extract air heat pump, to DHW + ventilated window	+	·ŀ·			÷				+	÷	
Hybrid ventilation: balanced winter, natural summer	+ +	• •		· ·	÷		?		?		
Natural ventilation	$\frac{\cdot}{\cdot}$	+ +		+	+	?	÷	?	+	÷	$\frac{\cdot}{\cdot}$
Extract air heat pump + ventilation radiator	+	·ŀ·	·ŀ·	·ŀ·	?				+		
Compact HVAC-unit	+ +	· ·	?	·ŀ·	÷	?	+				
Ground source heat pump	+ +	· ·	·ŀ·	·ŀ·							
Hydronic woodstove			·ŀ·	?							?
Solar thermal		÷	÷	?							
Air-air heat pump	+					÷					
Wood stove (not only peak)	+	+									÷
Pellet stove		·ŀ·									
Electric resistance heating	?	+ +		+							

Conclusion

- A number of ambitious energy upgrading projects are completed, but few are monitored and evaluated.
- A wider range of concepts and strategies than commonly used in Norway seem to be relevant
- No solution or system appears to be an obvious and universal choice; a number of very different system solutions are relevant, depending on the house and situation.
- Installing hydronic space heating is a major cost and intervention, and (non-)existance of this seem to be crucial for the choice of system.
- Occupant preferences and behaviour seem to be important for choice of system
- Between the Nordic countries, there are differences in commonly used HVAC concepts for renovation not explained by climate only. Energy pricing and building code may be part of the explanation.

