

1st Nordic Conference on Zero Emission and Plus Energy Buildings

Towards carbon neutral built environments

Energioppgradering av småhus i tre til nesten nullenerginivå

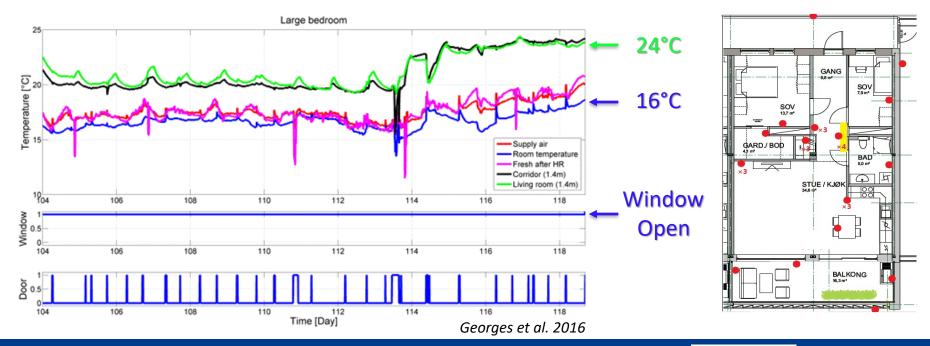
Energy efficiency of strategies to enable temperature zoning during winter in highly-insulated buildings

Case of detached house with balanced mechanical ventilation

Laurent Georges, Eirik Selvnes, Vegard Heide and Hans Martin Mathisen Energy and Process Engineering Department, NTNU

1st Nordic ZEB+ conference, November 2019, Trondheim, Norway

NTNU

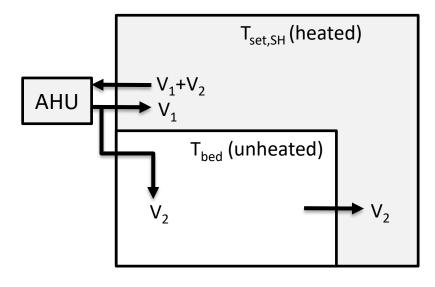

Temperature zoning: background

- Limited temperature zoning in super-insulated building envelopes
 - Highly-insulated external walls and high-performance windows
 - Centralized one-zone balanced mechanical ventilation with efficient heat recovery
- Many Norwegians would apply temperature zoning
 - Based on questionnaires and field measurements in Passive Houses (ex. Berge 2016)
 - Many Norwegians want colder bedrooms (< 16°C)
 - ~50% occupants open bedroom windows several hours every day during winter time
 - The main motivation is temperature control not IAQ
 - Occupants do not choose the supply air temperature consistently to get colder bedrooms
 - Desired indoor temperature in living areas is often between 22 and 24°C

Temperature zoning: example

• Measurement during two weeks in a passive house apartment

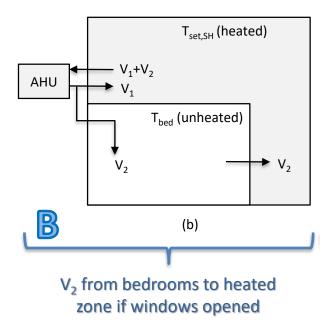
Temperature zoning: research question


- Research showed that
 - Based on calibrated multi-zone dynamic simulations (ex. Georges et al. 2016)
 - Extensive window opening leads to significant increase of space-heating needs (ΔE)
 - Control alone cannot decrease bedroom temperature without large ΔE
 - Something should be changed in the building concept, like the ventilation strategy

- Our research question is how to reduce ΔE from window opening?
 - 1. Relative importance of ventilation and heat conduction in partition walls?
 - 2. How alternative ventilation strategies would improve energy efficiency?

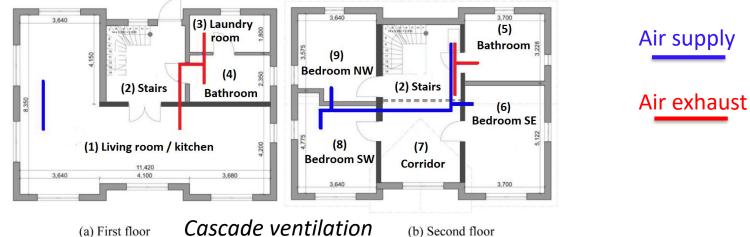
Framework of analysis

Steady-state heat transfer from heated to unheated rooms


$$P = \underbrace{U_{p}(T_{set,SH} - T_{bed})}_{Heat \ conduction} + \underbrace{\dot{V}_{2}C_{p}(T_{set,SH} - T_{bed})}_{Ventilation \ reheating}$$

• When open bedroom window, nothing changes except

Alternative ventilation strategies

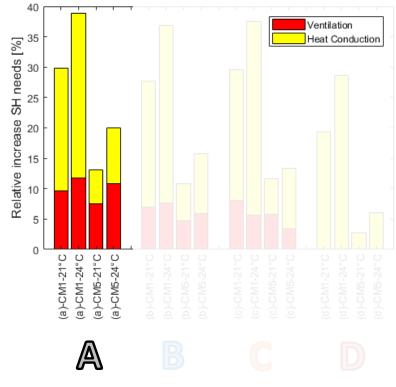

- To reduce the ventilation contribution on ΔE

Case study

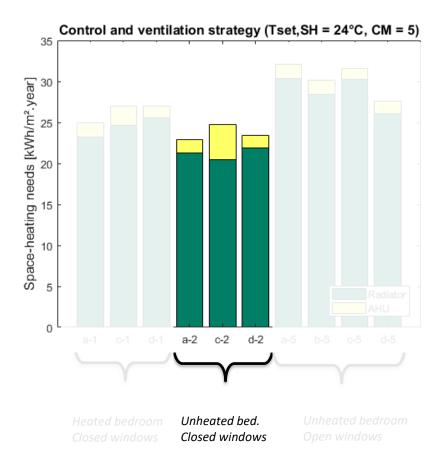
- Detached house
 - 173 m² located in Oslo (open flat terrain without obstacle)
 - Passive house (NS3700) with different construction models (lightweight to heavy)
 - Simulated in IDA-ICE with embedded ventilation network
 - CAV with airflow rates according to TEK17 adapted for each ventilation strategy

Case study

- Control strategies changing set-points for
 - Heated zones, AHU heating coil, bedrooms, window and door opening


Cases	Living areas	AHU	Bedroorns	Windows	Windows	Door
	T _{set,SH}	T _{set,AH}	T _{set,bed}	Schedule	T _{set,win}	Schedule
1	21 or 24°C	T _{set,SH} -3	T _{set,SH}	Closed	-	Closed
2	21 or 24°C	T _{set,SH} -3	None	Closed	-	Closed
3	21 or 24°C	16°C	None	Closed	-	Closed
4	21 or 24°C	14°C	None	Closed	-	Closed
5	21 or 24°C	T _{set,SH} -3	None	Open (Night)	16°C	Closed
6	21 or 24°C	16°C	None	Open (Night)	16°C	Closed
7	21 or 24°C	14°C	None	Open (Night)	16°C	Closed
8	21 or 24°C	T _{set,SH} -3	None	Open (Night)	16°C	Open (Day)

Steady-state analysis


• Setup

- Outdoor temperature selected to give typical temperature zoning
- Heavy-weight (CM1) and lightweight (CM5) construction
- Two different set-point temperature in living areas (21 and 24°C)
- Increase of space-heating needs analyzed
- Conclusions
 - Heat conduction dominant with heavy-weight
 - Heat conduction ≈ ventilation effect in light-weight construction
 - Moderate reduction of ventilation contribution for strategies (b) and (c)
 - No ventilation effect with strategy (d)
 - Heat conduction part left almost unchanged

Yearly dynamic simulation

- Setup
 - For lightweight (CM5) construction
 - For set-point temperature in living of 24°C
 - Different strategies for control (here 1-2-5)
- Conclusions closed bedroom windows
 - Slightly higher space-heating needs without cascade ventilation (increased airflow rates)
- Conclusions open bedroom windows
 - Always an increase of space-heating needs
 - Moderate reduction for (b) and (c)
 - Larger reduction for decentralized (d)

Conclusions

- Energy efficiency with window opening in bedrooms (or other heat sinks)
- Research question 1:
 - Heat conduction dominant in heavyweight buildings (non-insulated partition walls)
 - Effect heat conduction and ventilation reheating same order for lightweight buildings
 - Ventilation strategy cannot solve the problem alone
- Research question 2
 - Ventilation contribution can be moderately reduced by shutting down supply air in bedrooms of mechanical ventilation when bedroom windows opened (strategy b)
 - Ventilation contribution can be moderately reduced by balancing airflows in bedrooms (strategy c, here still with a one single supply air temperature)
 - Ventilation contribution can be significantly reduced by decentralized ventilation

