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ABSTRACT

The Web Audio API and associated JavaScript packages
have enabled developers to design interfaces where, to an
unprecedented extent, the elements of music are at users’
fingertips. When these interfaces are intended to help users
to understand those musical elements, it can be useful to
calculate or display manifestations of music-theoretic con-
cepts, such as the key of an excerpt, the segmentation and
labeling of chords, and melodic and harmonic intervals.

The MATA Util package contains JavaScript code for ex-
ecuting these calculations. The input music representations
are assumed to be symbolic, coming from MIDI or Mu-
sicXML files, or having been estimated from audio. This
paper introduces the contents of the package and the music-
cognitive research on which some of its constituent algo-
rithms are based.

Some of the methods are of a more basic nature, such as
for cyclic permutation of arrays or estimation of the pitch
and octave of a note given its MIDI number and surrounding
context. We have found use for these methods often enough
during music interface development that they are included
too.

The MAIA Util package is available for use from
https://www.npmjs.com/package/maia-util

1. INTRODUCTION

In the domains of sound and interface design, packages
such as Tone.js [25, 24] and NexusUI [3, 2] have increased
the ease with which programmers can develop and proto-
type applications that make use of the Web Audio API [1,
29]. In the domain of music information retrieval (MIR),
progress continues to be made with automatically analyzing
and generating music-related data, especially with regards
the training and testing of deep learning algorithms, and
much of it implemented in open-source Python libraries. In
the domain of computational music theory, a library called
music21 [15] — also in Python — has proved popular for im-
porting, displaying, and calculating features of symbolic mu-
sic representations. All the while, the domain of music cog-
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nition proceeds with experimental investigation and compu-
tational modeling of how we perceive, create, and respond to
music [17]. The broad premise of this paper is that while ex-
citing progress is being made within each of these domains,
exciting progress can also be made by improving the bridges
that exist between them.

A more specific premise of the paper, and the MAIA Util
package described below, is that often in sound and inter-
face design, it can be useful to run and even display the
results of MIR, music-theoretic, and music-cognitive algo-
rithms. The remainder of the paper is structured around
introducing and contextualizing implementations of some of
these algorithms.

2. HELLO WORLD AND INPUT/OUTPUT

A MAIA Util “hello world” demo can be explored at
https://tinyurl.com/y3rz5q73, and shows how the package
can be used to analyze and display phenomena arising from
an incoming symbolic representation, obtained from auto-
matic transcription of the audio signal [18, 22]. For the sake
of demonstrating this bridging of Web Audio, MIR, music
theory, and music cognition, we show how MATA Util can
be used to calculate and graph the empirical distribution of
estimated MIDI note numbers (MNN), as well as the distri-
bution of estimated events throughout the average measure,
quantized at the 16th-note level. Two of the MATA Util
functions used in this demo are count_rows, which is useful
for calculation of possibly-multidimensional empirical distri-
butions, and bar_and_beat_number_of_ontime, which takes
an incrementing measure of time in a song (referred to as
ontime) and an array consisting of the initial time signature
and any subsequent changes, and returns the corresponding
measure (bar) and beat numbers.

The input symbolic representation for the “hello world”
demo is a custom-made, JSON format called a Composition
object.’ The exact format of the input is not of particular
importance, however, since most of MAIA Util’s methods
operate on a point-set representation of the music,

E={ei,es,....en}, (1)
with elements
e, = (xhyi,ziywhuiyvi)a where i € {1727 ce ’n}7 (2)

and which is relatively straightforward to obtain from Node

!See https://crunchy.musicintelligence.co/composition/ for
more details.



Package Manager (NPM) MIDI or XML parsers.? In
terms of implementation, E is stored as a nested numeric
JavaScript array. For a given point e; as in (2),

e x, is an ontime, which is an incrementing measure of
time in a song or piece counted in quarter-note beats
from 0 for measure 1 beat 1;

e y; is an MNN, which is the numeric position of a key
on the piano keyboard;

e z; is a morphetic pitch number (MPN) [26], which is
the numeric height of a note on the stave (see Section 5
for more details);

e w; is a duration measured in quarter-note beats;
e u,; is a channel or staff number;

e v; is a velocity in the range 0 (silent) to 1 (maximum
loudness).

As mentioned in the introduction, the MAIA Util pack-
age is intended to bridge existing libraries built on the Web
Audio API with both MIR algorithms (such as the audio-to-
symbolic demo mentioned above) and music-theoretic con-
cepts. As such, there is no one common or definitive output
format. The guiding principle has been to make any ar-
ray output convenient for subsequent use by JavaScript’s
built-in map, filter, and reduce methods, Tone.js’ schedul-
ing methods, NexusUI’s GUI elements, and by the HTML5
canvas in general. The API can be explored at https://
musicintelligence.co/api/maia-util/. It is documented with
JSDoc and tested using Mocha. There is potential for op-
timization, and the approach at present is more functional
than object-oriented.

The next three sections address the most important music-
theoretic components of MATA Util, while emphasizing that
the applicability of these methods extends beyond purely
music-theoretical concerns.

3. KEY ESTIMATION AND KEYSCAPES

A considerable amount of research in the music-cognitive
literature has been devoted to the perception of key and
tonality [14, 23]. Complementing this work are numerous
efforts in the music-cognitive and music information retrieval
literatures to automatically estimate the key of an excerpt
from input audio or symbolic representations. While the use
of key signatures in staff notation can be considered a music-
theoretic concept, the above-mentioned work underlines the
psychological reality or validity of key and tonality, as well
as how the perceived key sometimes differs from the notated
key. Therefore, being able to calculate, display, or otherwise-
visualize the key of an excerpt in a web-based music interface
can be useful, irrespective of whether that interface involves
staff notation.

The key-estimation algorithms of Collins et al. [14] and
Krumhansl [23] are based on listening studies involving the
perception of tonality. The former operates directly on the
audio signal, involves simulation of the inner ear and audi-
tory cortex, and is implemented in Matlab, whereas the lat-
ter — known as the Krumhansl-Schmuckler key-finding algo-
rithm — operates on symbolic input and involves correlating

’E.g., https://www.npmjs.com/package/midiconvert and
https://www.npmjs.com/package/xml2js

a pitch-class histogram of incoming music data with experi-
mentally derived, idealized representations of the pitch-class
content of each major and minor key. Due to its relative
simplicity and speed, we implemented the latter algorithm
in MATA Util as the function fifth_steps_mode.

A common observation regarding musical structure —
broadly construed — is that it is hierarchical. With regards
tonality and key, this observation applies, say, to an excerpt
that begins and ends in C major, with a modulation to G
major partway through. On the highest level, it is accurate
to state that the excerpt is in C major, but this overlooks the
more fine-grained detail, where a modulation occurs from C
to G and back again. Sapp [30] introduces the concept of a
keyscape, which is a pyramidal representation of the output
of a key-estimation algorithm that captures the hierarchical
nature of tonality and key. Colored blocks toward the top
of the pyramid represent key estimates of larger segments
of an input excerpt, while blocks towards the base of the
pyramid represent key estimates of smaller, more momen-
tary segments of the excerpt. Key estimates of segments of
equal length are represented by blocks in the same row, and,
in the same row, a block to the left represents a segment that
occurs earlier than one to the right. Keyscape calculation
itself is not built into MAIA Util, but an interactive demo
of keyscapes available from https://tinyurl.com/y5q8umdq
demonstrates that it is relatively straightforward to calcu-
late and display keyscapes based on the use of MATA Util’s
fifth_steps_mode.

4. CHORD LABELING

Automatic chord labeling from input audio or symbolic
representations is a problem of long and consistent interest
in music computing [28, 6, 31, 16]. As a primary use case,
the output of an accurate chord labeling system provides
guitarists and other musicians a convenient means to begin
playing along to and/or learning a song.® The function of
chords in sequences is a topic that has received much atten-
tion from music theorists [8] and cognitive scientists [7, 21],
but compared to work on key-estimation algorithms, there
is less overlap between music-cognitive and MIR literatures
when it comes to automatic chord labeling.

With measure-length granularity (or shorter), the lowest
parts of a keyscape can be thought of as a chord-labeling
system. For instance, if a measure (or less) of music were
labeled as being in C major, then from a music-theoretic
standpoint this would not be considered sufficient material
to properly establish a key — rather it would probably con-
tain some or all the pitch classes of the C-major triad and
possibly some non-chord tones, i.e. a C-major chord. That
is, the lowest parts of a keyscape provide chord-like labels.

What the keyscape does not provide explicitly, however, is
a segmentation of the music. For instance, if an excerpt con-
sisted of three-and-a-half measures articulating a C-major
triad, followed by a change to a G-major triad for half a
measure, then the correct segmentation and labeling would
be (0, “C major”), (14, “G major”), where (z,l) denotes a
chord label [ beginning at ontime z. The information under-
lying the keyscape, however, would likely be (0, “C major”),
(4, “C major”), (8, “C major”), (12, “C major”). That is,
the first three-and-a-half measures are not combined into a
single label, and the existence of the G-major chord is not

3E.g., https://chordify.net/



evident, with content in ontimes 12-14 (C major) and 14-16
(G major) being described by a single label (“C major”).
Pardo and Birmingham [28] suggest that any viable chord
analysis system ought to have both segmentation and la-
beling components. They propose a linear-time algorithm
called HarmAn, which explores a subspace of all possible seg-
mentations of an input symbolic representation, according
to how well those segments score against predefined chord
templates (pitch-class sets, such as {0,4,7,10} for “C 77).
Each predefined template has an associated label, and so
the template giving rise to the maximum score for the seg-
ment under consideration will receive that label. Again giv-
ing priority to the algorithm’s relative simplicity and speed,
we implemented HarmAn in MAIA Util as the function
harman_forward. The term “forward” refers to the subspace
of all possible segmentations explored by the algorithm.
Partition point and minimal segment [28] are two impor-
tant concepts involved in the early stages of HarmAn that
have uses beyond chord labeling. We have implemented
them in a corresponding function called segment. A parti-
tion point is an ontime in the input symbolic representation
where a note either begins or ends. A minimal segment is
the set of notes that sound between one partition point and
the next. (One note may belong to more than one minimal
segment.) With respect to HarmAn, the minimal segments
are the building blocks of the segmentation. The scoring
function favors the appending of two minimal segments if
their combined score against the chord templates is greater
than or equal to the sum of the scores for the two minimal
segments considered in isolation. Returning to the example
of three-and-a-half measures articulating a C-major triad,
followed by a change to a G-major triad for half a measure,
this process of considering combined or isolated minimal seg-
ments is how HarmAn would arrive at the correct segmen-
tation and labeling of (0, “C major”), (14, “G major”).
Beyond HarmAn, minimal segments can be used to:

e Provide a measure of monophony — the proportion of
minimal segments in an excerpt that contain either one
or zero note(s) can be used to measure the extent to
which that excerpt is monophonic [9, 20];

e Extract the top (or bottom) line from polyphonic ma-
terial, known as skylining;

e Group notes so as to retrieve all instances of a specified
harmonic interval in an excerpt [9]. This is discussed
further in the next section;

e Group notes so as to calculate empirical probability
distributions for one or more excerpts, for analytic [12]
or generative [13, 11] purposes.

S. MELODIC/HARMONIC INTERVALS

Identifying the interval between two consecutive notes
(melodic interval) or between two notes that sound together
(harmonic interval) is a fundamental topic in music theory.
Quantitative and qualitative investigations of those inter-
vals have been the source of much discourse. Representing
a melody in relative (as intervals) rather than absolute (as
note names or MIDI numbers) terms is also psychologically
relevant and computationally advantageous: regarding psy-
chological relevance, most listeners have relative rather than
absolute means of pitch perception and production, i.e. we

can recognize or attempt to sing “Happy birthday” irrespec-
tive of starting pitch; regarding computational advantage,
most audio- and symbolic-based music recognition systems
use differences between pitches (intervals) rather than the
pitches themselves as a means of querying a database [5,
32].

For users with music-theoretic knowledge, a frustrating
aspect of existing music-intervallic calculators is that the
interval between the note pair (C4, Ff4) might be mislabeled
as a diminished fifth, or vice versa that between the note
pair (C4, Gb4) might be mislabeled as an augmented fourth,
when the opposite is true. Both of these intervals are six
MNNSs, and if MNNs alone are used as the basis for the
difference calculation, then both pairs are represented as
(60, 66), so it is impossible to distinguish an Ff4 from a Gb4,
and impossible to distinguish an augmented fourth from a
diminished fifth.

There is a useful, complementary numeric representation
of pitch called morphetic pitch number (MPN) [26] that
helps to resolve this issue. Figure 1 contains some exam-
ples of (MNN, MPN)-pairs in the neighborhood of “middle
C” = C4 = (60, 60). Whereas MNN is the numeric position
of a key on the piano keyboard, MPN is the numeric height
of a note on the stave. So while Ff4 and Gb4 map to the
same key on the keyboard, they are notated on different lines
of the stave, and so taking their MNNs and MPNs together,
they are distinguishable: F#4 maps to (MNN, MPN)-pair
(66, 63), while Gb4 maps to (MNN, MPN)-pair (66, 64).*

Similarly, we can associate the difference between two
(MNN, MPN)-pairs with correctly named musical inter-
vals, meaning that entities such as “augmented fourth”
and “diminished fifth” are distinguishable from one another.
For example, two pitches p; and p2, where p; is assumed
lower in pitch than ps, form the interval of a diminished
fifth if and only if the difference between their correspond-
ing (MNN, MPN)-pairs is (6, 4); they form the interval
of an augmented fourth if and only if the difference be-
tween their corresponding (MNN, MPN)-pairs is (6, 3),
and so on. The MAIA Util functions for converting be-
tween pitch and octave number, and (MNN, MPN)-space are
called pitch_and_octave2midi_note_morphetic_pair and
midi_note_morphetic_pair2pitch_and_octave.

Identifying all instances of a specified harmonic interval
is slightly more difficult than the corresponding task for a
melody, because (a) two notes forming the relevant interval
may not begin at the same time, even though this is how
we typically think of rudimentary harmonic intervals, and
(b) there may be notes that occur in between them in a
chord, meaning that we cannot rely on comparisons between
adjacent notes when the notes are placed in ascending order.
Problem (a) can be solved with use of segment (see previous
section), because if two notes do form the specified harmonic
interval, they will occur together in at least one minimal
segment. Problem (b) can be solved as follows:

1. Let us notate the point-set representation of notes
belonging to this minimal segment as FE =
{e1,e2,...,ex}, and then let us project this set down
to a space where only the dimensions of MNN and
MPN are retained, notating this projected set as D =
{di,ds,...,dn}, where m may be less than n. So

4In mathematical terms, we say there is a bijection between
pitch and octave number, and (MNN, MPN)-space.
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Figure 1: Some MIDI note numbers (MNN) and morphetic pitch numbers (MPN) close to C4 (“middle C”).

d; = (yi, z;) for some MNN y; and MPN z;;

2. Let v = (vy,v.) be the (MNN, MPN)-difference corre-
sponding to the specified harmonic interval. Then the
specified harmonic interval occurs in this minimal seg-
ment if and only if there exist some 4,5 € {1,2,...,m}
satisfying d; + v = d;. In other words, d; translates
to d; by the vector v.

3. Meredith [27] defines the mazimal translatable pat-
tern (MTP) of the vector v in the point-set D as
the set of all points in D that are translatable to
another point in D by the vector v, and MAIA
Util contains an implementation of this concept as
the function maximal_translatable_pattern. So we
can solve problem (b) by calculating E,D as de-
scribed above and then seeing if the array returned by
maximal_translatable_pattern(v, D) is populated
(specified interval occurs) or empty (specified interval
does not occur).

Algorithms for calculating MTPs in an unsupervised man-
ner form the basis of geometric pattern discovery in music,
enabling the discovery of repeated elements such as riffs,
motifs, themes, and sections [27, 10]. A discussion of these
algorithms is beyond the scope of this paper, but their rep-
resentational and functional bases are present in MATA Util.

6. UTILITY FUNCTIONS

This section addresses a couple of methods that are very
widely used in our interfaces, but not as complex or closely
connected to music cognition as those described above.

6.1 Pitch estimation

During the development of several web-based music inter-
faces, we have found it necessary to estimate the pitch of
given MNNs in a surrounding musical context. Such a need
tends to arise because MIDI is a ubiquitous input format,
but lacks accurate pitch and octave information — e.g., is
MNN 66 an Ff4 or Gb4? — and we strive for music-theoretic
correctness. Just as it is frustrating when an interval is
mislabeled (see the discussion of diminished fifths and aug-
mented fourths in the previous section), so it annoys mu-
sically trained users when pitch sequences such as (C, D,
E, Gb, G) appear in an interface, which probably ought to
be (C, D, E, Ft, G). These misspelt sequences tend to re-
sult from oversimple MNN-to-pitch estimation algorithms.
From an educational perspective, mislabeling of pitches and
intervals is also detrimental to novice users who are learn-
ing, implicitly or explicitly, about music theory via use of an
interface.

A recent discussion about pitch estimation from MNN on
the music21 Google Group [4] underlines that music21 does
not have built-in functionality for addressing this problem.

The solution suggested on the forum involves a base-40 nu-
meric representation [19], which has less psychological va-
lidity compared to the solution involving MNN-MPN space,
where MNNs model our perception of chromatic pitch and
MPNs model our perception of diatonic pitch.

MAIA Util contains a function called guess_morphetic,
which works by providing an MNN and the key of an excerpt
(see discussion of fifth_steps_mode above), and then map-
ping the provided MNN to the (MNN, MPN)-pair that is
most likely to occur in the key. For instance, Ff’s are gener-
ally more numerous in pieces in C major than are Gb’s, so if
the provided MNN and key are 66 and C major, respectively,
then 66 will map to the (MNN, MPN)-pair (66, 63) for Ff
and MPN 63 will be returned, rather than mapping to the
(MNN, MPN)-pair (66, 64) for Gb and returning MPN 64.
Due to the bijection between pitch and octave, and (MNN,
MPN)-space (see Section 3), once we have the (MNN,
MPN)-pair, we can map unambiguously to a pitch and oc-
tave using midi_note_morphetic_pair2pitch_and_octave.
That is, (MNN, MPN)-pair (66, 63) maps to Ff4. This is
how MAIA Util can be used to convert an input MNN se-
quence (60, 62, 64, 66, 67) to the correctly spelled pitch and
octave sequence (C4, D4, E4, F4f, G4).

Pitch estimation algorithms in the literature tend to
be more complex than that based on MAIA Util’s
guess_morphetic (e.g., [26]). Informally, we have not ob-
served a big tradeoff in accuracy, however, and so favor a
simple and speedy approach at present.

6.2 Projection, sorting, and deduplication of
nested numeric arrays

Since point-set representations featured prominently in
Section 2 and have been present in other sections too, it
seems appropriate to conclude the tour of MAIA Util with
some of the point set-specific functionality. There is a func-
tion orthogonal_projection_not_unique_equalp that can
retain/remove a specifiable selection of dimensions from an
input point set, which is a form of projection operation in
mathematics. The sorting of a point set can be achieved
with sort_rows, which comprises calling the built-in sort
method with a helper function lex_more that returns +1
if the first input is lexicographically more than the second
input, and —1 otherwise. The sort_rows function returns
both the sorted array as well as the indices of the elements
from the input array. Another function, unique_rows, re-
turns a sorted, deduplicated version of the input array, as
well as the indices of the elements from the input.

7. DISCUSSION

Considerable progress has been made in recent years con-
cerning complex topics and problems within the domains
of web audio, MIR, music theory, and music cognition. In
some cases, this progress has manifested in usable, if cir-
cumscribed, algorithmic solutions. The current paper repre-



sents a modest attempt to bring together some of these algo-
rithms and associated insights. It describes an NPM package
called MATA Util that contains implementations of meth-
ods that allow the algorithms to interface with each other.
One outcome consists of interactive demos that bridge the
above-mentioned domains in potentially novel and interest-
ing ways.

Through introducing some of MAIA Util’s methods and
use cases for key estimation, chord labeling, and interval
identification, we have suggested that it can be useful to
calculate and sometimes display manifestations of music-
theoretic concepts, even if the interface that displays these
manifestations is not intended for exploring music theory
or staff notation per se. We have also emphasized how it
can be frustrating and potentially detrimental to users when
music interfaces show “unmusical” pitch spellings or inter-
vals, and we have demonstrated how our use of MNN-MPN
space helps to address some of these issues. Where our key
estimation, chord labeling, and interval identification algo-
rithms draw on findings from the literature on music cogni-
tion, this has been pointed out because it is reasonable to
assume that use of algorithms for which there is some un-
derlying psychology validity will lead to calculations and/or
visualizations that listeners find to be more convincing or
realistic.

Up until now, our criterion for inclusion of a method in
MATIA Util has been that the method is required in multi-
ple, in-development music interfaces. Future work is likely to
consist of including more algorithms for quantization, score
following, pattern discovery, and music generation. Whether
these algorithms warrant their own packages — either be-
cause they are too complex or because they are not widely
required — or are added to MAIA Util remains to be seen.
Either way, there is something exciting about the potential
for wide and rapid dissemination afforded by the web, com-
bined with contributions from several different intersecting
music research domains that are coalescing in web audio
space.
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