
Design of a real-time multiparty DAW collaboration
application using Web MIDI and WebRTC APIs

Scott Stickland
The University of Newcastle, Australia
School of Creative Industries (Music)

scott.stickland@uon.edu.au

Rukshan Athauda
The University of Newcastle, Australia
School of Electrical Engineering and
Computing (Information Technology)
rukshan.athauda@newcastle.edu.

au

Nathan Scott
The University of Newcastle, Australia
School of Creative Industries (Music)
nathan.scott@newcastle.edu.au

ABSTRACT
Collaborative music production in online environments has seen a
renewed focus as developers of Digital Audio Workstation (DAW)
software include features that cater to limited synchronous
participation and multiparty asynchronous collaboration. A
significant restriction of these collaboration platforms is the
inability for multiple collaborators to effectively communicate and
seamlessly work on a high-fidelity audio project in real-time.
This paper outlines the design of a browser-based application that
enables real-time collaboration between multiple remote
instantiations of an established, mainstream and fully-featured
DAW platform over the Internet. The proposed application
provides access to, and modification and creation of, high-fidelity
audio assets, real-time videoconferencing and control data
streaming for communication and synchronised DAW operations
through Web Real-Time Communication (WebRTC) and Web
MIDI Application Programming Interfaces (APIs). The paper
reports on a proof-of-concept implementation and results, including
several areas for further research and development.

1. INTRODUCTION
Present online collaboration, facilitated by recent DAW-specific
and -generic approaches, can be classified as either synchronous or
asynchronous in design and operation. Synchronous approaches
focus on sharing and editing music data in real-time. For effective
and meaningful collaboration, this data consists of high-fidelity
audio files and streams. However, current Internet bandwidths
struggle to handle the real-time transfer of such data-intensive
streaming and maintain the audio’s high fidelity. Thus, these
collaborations are limited to a few participants at most. Conversely,
asynchronous approaches forgo real-time online interactions in
preference for increased numbers of remote participants and
maintenance of the audio assets’ fidelity. Central to asynchronous
collaboration is the uploading and downloading of lossless audio
files to and from cloud storage linked to the DAW applications, or
directly to and from collaborators’ local storage drives.
Our previous research examined four widely-available approaches
to DAW-integrated online collaboration [1]. Two synchronous
collaboration platforms, Source Elements’ DAW-generic Source-
Connect Pro and Steinberg’s Cubase Pro-specific VST Connect
Pro and VST Connect Performer bundle, not only restrict the
number of participants but also access to the DAW project itself [2,
3]. Synchronous collaboration necessarily requires compression of
the project’s audio streams to reduce the effects of latency and jitter

inherent in Internet data transport. Applying lossy audio codecs,
though, result in a degradation of the audio’s fidelity. The two
synchronous platforms do provide optional features to record, store,
and stream lossless Pulse Code Modulation (PCM) audio files of a
remote performer to replace jitter-affected files post-session.
Data- and bandwidth-intensive audio streaming, and the
complication of varying latencies between multiple, simultaneous
connections, obliged Avid and Steinberg to approach online
collaboration asynchronously, adopting a similar concept to that
utilised by Source-Connect Pro’s, and VST Connect Pro’s,
automatic PCM audio upload features. The two asynchronous
platforms, Avid’s Cloud Collaboration and Steinberg’s VST
Transit, are included features of their respective DAWs, Pro Tools
and Cubase [4, 5]. By eschewing real-time collaboration, these
approaches significantly increase participant numbers and provide
universal access to a DAW project. Employing lossless audio
codecs to compress the project’s PCM audio files before uploading
maximises the available cloud storage capacity, reduces transfer
times, and maintains the original audio’s high fidelity.
Web browser-based platforms, such as Spotify’s Soundtrap,
AmpTrack Technologies’ Amped Studio 2, and BandLab
Technologies’ BandLab also offer asynchronous collaboration
methods for multiple participants [6-8]. All provide users with the
ability to share a DAW project with others, issuing invitations by
either co-opting existing social media applications, such as
Facebook and Twitter, email and Short Message Service (SMS), or
in-application messaging to distribute a link to the project. In
Amped Studio 2 and BandLab, sharing a DAW project creates
multiple versions, or forks, of the project, one per collaborator, so
that the integrity of the original project is preserved [7, 9].
Soundtrap adopts a collaboration model similar to VST Transit and
Cloud Collaboration, where users can contribute and save to a cloud
version of the project, then sync their local project with the one in
the cloud asynchronously.
Nevertheless, transferring large lossless audio files over the Internet
takes time and bandwidth, meaning collaborators can only access,
listen to, and assess project contributions post factum.
Asynchronous collaboration can slow progress in this environment;
contributions cannot be auditioned or modified in real-time, so the
possibility of revisions, or indeed discarding material altogether, is
significantly more likely. Soundtrap’s approach to minimising
these consequences is to integrate a videoconferencing feature
using the WebRTC API [10]. Lind and MacPherson [10] explain
that a video chat feature enables ‘instant feedback with
collaborators as they create projects together in real-time.’ It is
worth pointing out that while the video chat feature is indeed
synchronous, sharing contributions to, and modifications of, a
project remain asynchronous.

Licensed under a Creative Commons Attribution 4.0 International License (CC BY
4.0). Attribution: owner/author(s).
Web Audio Conference WAC-2019, December 4–6, 2019, Trondheim, Norway.
© 2019 Copyright held by the owner/author(s).

Georgia Institute of Technology’s Centre for Music Technology’s
EarSketch is an amalgam of a browser-based Python and JavaScript
Integrated Development Environment (IDE), and a rudimentary
DAW for the playback and manipulation of audio samples via
scripts [11]. Their recent developments focus on collaborative
script editing through the use of an operational-transform algorithm
via WebSockets, and time synchronisation utilising Network Time
Protocol’s (NTP’s) clock-synchronisation algorithm [12]. It,
however, lacks the requisite processing capabilities for professional
mixing and mastering activities.
Currently, mainstream and web browser-based DAW platforms
cannot facilitate synchronous, multi-party collaboration and
communication, where all participants, irrespective of location, can
simultaneously access, edit and contribute to professional,
specialised activities such as post-production mixing and
mastering. Repositioning such activities as an online collaborative
undertaking presents several challenges and requirements.
Latency, Jitter, Bandwidth and High-Fidelity audio assets:
Expert post-production activities require the use of high-fidelity
audio files. In particular, professional mixing of multitrack
recordings for commercial CD and streaming-service release
require audio files with a sample rate of 44.1 or 48 kHz, at the very
least, to avoid heavy anti-aliasing filtering. Similarly, audio file bit
depths of 16- or 24-bit are necessary to reduce the noise floor and
create more headroom. Streaming these assets in real-time is
challenging considering high-fidelity audio is, by its very nature,
bandwidth-intensive. Furthermore, streaming over the Internet
utilising reliable transport layer protocols such as Transmission
Control Protocol (TCP), increases latency, whereas, the use of
‘best-effort service’ protocols such as User Datagram Protocol
(UDP) can reduce delays (latency) but does not guarantee reliable
delivery, resulting in lost packets (jitter).
A benefit of existing asynchronous collaboration methods is the
ability to preserve the DAW project’s high-fidelity audio files;
however, existing synchronous approaches rely upon lossy audio
streams [2, 3]. Therefore, a way to access and modify high-fidelity
audio files in synchronous multi-party collaborative environments
is needed.
Access to, and synchronous operation of, a DAW platform:
Existing asynchronous DAW-specific multi-party solutions grant
each participant equal access to the music production project via
their local DAW instantiation. Providing such equal access to a
collaborative, specialised DAW platform in real-time, though, is
currently lacking.
Real-time communication methods: Cloud Collaboration, VST
Transit, Amped Studio 2 and BandLab, while catering for multiple
collaborators, only provide asynchronous text messaging
communication [4, 5, 7, 8]. While the VST Connect Pro/Performer
bundle and Soundtrap include effective real-time video streaming,
the communication is just peer-to-peer (P2P) [2, 6].
Videoconferencing is highly desirous in a multi-party, real-time
collaboration environment.
The design of the DAW collaboration application presented in this
paper aims to address the challenges and requirements outlined
above.

2. THE COLLABORATION FRAMEWORK
Figure 1 illustrates the infrastructure and data flow of a proposed
music production collaboration framework.

Each collaboration endpoint runs a local DAW instantiation. Every
participant downloads and opens a previously uploaded

collaborative DAW project in cloud storage to each collaborator’s
DAW instantiation before the collaboration session. The Signalling
Server negotiates and instigates the WebRTC peer connections,
while the Media Server is used to synchronise and manage the real-
time communication and MIDI control data streams among
multiple collaborators. The following sections discuss the
architecture in detail.

Figure 1. The proposed collaboration framework’s

architecture and data flow.
The proposed framework (see Fig. 1) avoids high-fidelity audio
streaming for the collaboration project’s playout and source of new
audio material. The framework employs cloud storage and file
sharing to distribute the DAW project and its audio assets to all
participants before a collaboration session begins. The participants
employ their local DAW instantiation’s playback for monitoring
the project’s audio. Streaming lower-volume timecode facilitates
collaborative synchronous operation and aligns the playback of
remote DAW instantiations’ locally-stored high-fidelity audio
assets. While not eradicating latency, this approach dramatically
reduces its effects by avoiding bandwidth-intensive, high-fidelity
audio transmissions in real-time. Each participant is ignorant of the
slight differences in timing across the collaboration.

2.1 Achieving synchronicity
DAW instantiations are capable of synchronising their playback
utilising three mechanisms: machine control, clock source and
timecode [13]. Together, they deliver transport commands,
positional references in time, and speed references. The MIDI
paradigm includes MIDI Timecode (MTC) and MIDI Machine
Control (MMC) protocols. MTC has the additional benefit of
functioning as a clock source; therefore, MTC and MMC together
institute synchronised playback by establishing a master/slave
configuration across the collaboration (see Fig. 2).

Figure 2. Synchronised playback of DAW instantiations

through the streaming of MTC and MMC.

Incumbent on the framework is providing an equitable and
inclusive ability to edit the collaboration project and its audio
assets. All of the collaboration’s DAW instantiations must also
execute the on-screen modifications, made by any individual end-
user to their local DAW project, in real-time. Doing so provides
synchronised editing and navigation across the collaboration. We
have chosen Cubase Pro 10 to be the framework’s DAW platform,
as discussed in the next section.

2.2 Cubase Pro 10
The rationale for choosing Cubase Pro 10, beyond its calibre as a
professional, industry-standard DAW for post-production
activities, includes the ability to create user-defined MIDI
command maps implementing its Generic Remote feature, the
ability to create user-defined keyboard shortcuts (Key Commands)
and its MTC and MMC external synchronisation capabilities.

2.2.1 Generic Remote
The Generic Remote (GR) feature allows users to tailor the
operation of a generic MIDI controller to most any of Cubase’s
functions [13]. For our purposes, the GR provides significant utility
for transmitting and receiving MIDI control data mapped to the
DAW’s functions, navigation and transport. The GR creates
bespoke MIDI maps, linking specific MIDI Continuous Controllers
(CCs) and notes to DAW commands and operations (see Fig. 3).
Users can assign the GR’s MIDI input and output ports from a list
of the computer’s available MIDI devices.

2.2.2 Key Commands
Keyboard shortcuts are a common feature of many software
applications, designed to enhance productivity by reducing the
number of mouse moves and clicks. Cubase Pro includes numerous
keystroke combinations linked to DAW operations, including an
increasing number of homogeneous DAW-generic combinations.
Cubase Pro’s key commands can be tailored to map specific
keystroke patterns to almost any DAW function or operation.

Figure 3. Cubase Pro 10’s Generic Remote page.

2.3 Control data streaming
One of the framework’s significant efficiencies must be its ability
to effectively and reliably stream MIDI control data to all
participants over the Internet. Successful tests of Cubase Pro’s GR
MIDI mapping utilised the OSX MIDI network driver on Mac and

Tobias Erichsen’s rtpMIDI driver software [14] on Windows
computers to establish remote network connections between MIDI
ports. Employing the RFC 6295 Real Time Protocol (RTP) payload
format for MIDI messages (RTP-MIDI), the drivers map MIDI 1.0
data onto RTP streams over UDP [15]. These ports were assigned
to their corresponding GR’s input and output ports (see Fig. 4), and
each GR instance was configured identically by importing a mutual
XML mapping file.

RFC 768 UDP [16] is an inherently best-effort transport service that
is suited to real-time transmissions. UDP lacks reliable data transfer
characteristics. Nevertheless, RTP offered a degree of reliability
through error correction and concealment strategies to deal with
lost packets when combined with the Real-Time Control Protocol
(RTCP) [17].

Figure 4. Using connected network MIDI ports over the

Internet to test Cubase Pro’s Generic Remote interactivity.

3. WEBRTC AND WEB MIDI APIs
This section outlines the use of Web RTC and Web MIDI APIs to
implement the proposed architecture. In order to implement the
framework, the application needs to: (a) access a collaborator’s
computer webcam and microphone; (b) create secure connections
between the online participants; (c) provide a secure
videoconferencing capability; (d) gain access to MIDI ports
assigned to Cubase Pro’s GR; (e) create secure, semi-reliable,
configurable data channels between the online participants; and (f)
route MIDI control data to and from Cubase Pro and the data
channels for synchronous streaming over the Internet. Exploiting
the WebRTC and Web MIDI APIs can achieve all of these
requirements.

3.1 WebRTC
3.1.1 getUserMedia method

The getUserMedia() method is one of the most common ways to
access local webcam and microphone media devices, thus creating
a local media stream [18]. In the interests of privacy, only once a
user gives permission, the browser can access the local media
devices.

3.1.2 RTCPeerConnection API
WebRTC’s RTCPeerConnection interface is its fundamental
basis and establishes a connection between two endpoints, or peers,
over the Internet. Once established, the connection provides direct
bidirectional P2P communication without requiring an intervening
server. Reducing the distance data needs to travel similarly reduces
the latency it incurs. For the interface application, the
RTCPeerConnection can facilitate both media and data flow
between collaborators.

3.1.3 MediaStream API
A media stream comprises of two tracks, one each for video and
audio, with each track comprising of one or more channels; for
example, a stereo audio track consists of separate left and right
channels. The MediaStream interface creates an object by
grouping the local media tracks, thus defining each participant’s
media stream. The flow of MediaStream objects over an
RTCPeerConnection facilitates the collaboration framework’s
videoconferencing.

3.1.1 RTCDataChannel API
The WebRTC RTCDataChannel interface creates an additional
bidirectional channel over an RTCPeerConnection for the
simultaneous transmission of arbitrary data with similarly low
latency and high throughput [19]. The RTCDataChannel interface
was modelled closely on the WebSockets API, and consequently,
their methods (e.g. send()) and handlers (e.g. onmessage) behave
similarly [18]. The transmission between participants of the
framework’s MIDI control data occurs over these data channels.

3.2 Web MIDI
3.2.1 MIDIAccess API

Web MIDI’s MIDIAccess interface supplies methods to list the
MIDI input and output ports available to the browser and provide
access [20]. The navigator.requestMIDIAccess() method
and onMIDISuccess handler allows the framework’s interface
application, and by extension the participants, to nominate input
and output ports that correspond to Cubase Pro’s GR ports,
consequently establishing the crucial link between Cubase Pro and
the interface application.

3.2.2 MIDIInput and MIDIMessageEvent APIs
The success of the browser-based application to act as an interface
between Cubase Pro and the larger collaboration infrastructure
depends upon bidirectional transfer of MIDI control data to and
from a DAW’s GR MIDI ports, to and from a created
RTCDataChannel.
The MIDIMessageEvent interface achieves one direction when
passing an event object, in this case, a MIDI 1.0 message, to a
MIDIInput port’s onmidimessage handler upon receiving
control data from the GR output port. Each event object consists of
a Uint8array comprising MIDI message data bytes and a high-
resolution timestamp [20] and is transmitted via the send(event)
method on the RTCDataChannel (see Fig. 5).

Figure 5. The interface application’s use of WebRTC and

Web MIDI APIs, methods and handlers.

3.2.3 MIDIOutput API
The Web MIDI MIDIOutput interface and its send() method
realise the application’s other directional interfacing, together with
the RTCDataChannel interface’s onmessage event handler. The
data channel’s onmessage handler receives a control data event
object, which transmits the MIDI data bytes and timestamp over the
MIDIOutput interface’s MIDI port (see Fig. 5).

3.3 Virtual MIDI ports
The most productive way to link the GR and corresponding
interface application input and output ports are via virtual MIDI
ports. For the tests conducted so far, a third-party MIDI driver,
LoopBe30 by nerds.de [21], has created ports for the internal
connections between Cubase Pro and the interface. However, plans
are for the application to feature its own virtual MIDI driver and
ports in the future.

3.4 Stream Control Transmission Protocol
(SCTP)
WebRTC data channels utilise the RFC 4960 Stream Control
Transmission Protocol (SCTP) for their implementation and
delivery. Johnston and Burnett state that SCTP “provides useful
features not available in TCP, including reliable or semi-reliable
delivery, non-ordered delivery of packets, multiple streams within
an SCTP association, and an ability to send messages.” [18]. Of
particular importance to the collaboration framework is SCTP’s
semi-reliable and non-ordered delivery of data packets, in addition
to the RTCDataChannel interface’s maxPacketLifeTime and
maxRetransmits unsigned shorts and ordered Boolean
attributes [22]. Further testing and tuning are needed to determine
optimal values for such parameters.

4. CONNECTION ARCHITECTURES
While WebRTC is primarily designed to establish a P2P
connection, three different approaches can create multi-party
collaborations: (a) Mesh, (b) Mixing, and (c) Routing [23].

Figure 6. The mesh, mixing and routing architectures.

4.1 Mesh
As the name suggests, each participant constructs the mesh
architecture by establishing a peer connection with every other
participant (see Fig. 6). While it is relatively simple to implement
and requires no backend infrastructure, it is limited in its ability to
scale to a large number of participants and is CPU- and bandwidth-
intensive as the number of participants increases [24].

4.2 Mixing
A mixing architecture requires the integration of a Multipoint
Control Unit (MCU) into the multi-party architecture. Its
construction involves each participant establishing a peer
connection with the MCU only (see Fig. 6). It is the MCU’s task to
receive and mix the individual media streams, then send the mixed-
media stream to the participants [24]. Each endpoint assumes it is
interacting with another single endpoint.

4.3 Routing
A routing, or relay, architecture requires the integration of a
Selective Forwarding Unit (SFU) where each participant
establishes a peer connection with the SFU only (see Fig. 6). Unlike
an MCU, an SFU forgoes transcoding of the media streams, instead
deciding which of the media streams to forward on to the
participants [23]. Each participant receives the routed media and
data streams of all other participants in the collaboration.

5. PROTOTYPE IMPLEMENTATION
This section describes the results of a prototype implementation of
the DAW collaboration application. The prototype implementation
utilises a mesh architecture (which is the simplest to implement) to
interact with peers. Although mesh architecture is not scalable to a
large number of participants, the prototype demonstrates the
feasibility of the proposed application. Table 1 summarises the
resources used in the implementation.

Table 1. Resources for the P2P Mesh Test.
Computer 1 (Peer 1,
Signalling Server)

i5-7300U 2.6 GHz CPU; 16 GB RAM;
Windows 10 Enterprise OS

Computer 2 (Peers 2, 4, 6,
8)

i7-8700K 3.7 GHz CPU; 32 GB RAM;
Windows 10 Pro OS

Computer 3 (Peers 3, 5, 7) i7-3610QM 2.3 GHz CPU; 12 GB
RAM; Windows 7 Home Premium OS

LAN Speed 1 Gbps

Browser Chrome 75

DAW Cubase Pro 10

Application-Layer Protocol HTTPS

Signalling Server Built using socket.io on node.js

The application’s media and data streams were stable up to and
including the addition of the sixth peer, though the time taken for
the signalling process to establish each connection was noticeably
longer with each new addition. While there was a perceptible
increased latency in the playback and execution of functions across
the DAW instantiations, this perception was only due to having all
three computers in the one physical space.
The addition of the final two peer connections, however, saw a
marked deterioration in stability, including frozen video streams,
increasingly distracting audio stream jitter, and a progressive lack
of DAW responsiveness and extended delays in executing data-
heavy functions such as level fader operations. Figure 7 plots
Computer 1’s transmission and reception rates of WebRTC-related
packets.

Figure 7. Peer 1 packets transmitted and received per sec.

Latency across the mesh architecture increased exponentially as
each new peer joined the collaboration, as demonstrated by Figure
8’s plot of Peer 1’s packet delivery times. With a single P2P
connection, the average delivery time was 0.47 ms and increased
by 0.18 ms and 0.15 ms with the addition of the next two peers,
respectively. However, the addition of connections to Peers 7 and
8 saw increases of 0.82 ms and 2.09 ms, respectively.

Figure 8. Peer 1 connections: average packet delivery times.

Figure 9 plots the percentage of Computer 1’s overall CPU capacity
utilised by the framework’s three processes, namely Chrome.exe,
Cubase10.exe, and Node.exe. At peak consumption, which
coincided with 15 mesh connections and data-intensive Cubase Pro
10 operation, the processes accounted for 66.43% of the 2.6 GHz
CPU. At the same time, the computer’s overall percentage of CPU
usage measured just over 93%.

Figure 9. Peer 1 CPU usage percentage: Chrome Browser

(blue), Cubase Pro 10 (green), Node Signalling Server (red).

6. CONCLUSION AND FUTURE WORK
This paper presented the design of a browser-based DAW
collaboration framework that aims to provide multi-party real-time
collaboration. The framework addresses many of the shortcomings
of existing approaches – including access to high-fidelity audio
assets by collaborators, equal access to a DAW project, multi-party
real-time video-conferencing and others. The paper also outlined a
prototype implementation using Web RTC and Web MIDI APIs as
a proof-of-concept. The results are promising.
Future work will determine the most reliable and timely delivery
methods, having demonstrated the ability to replace the transport of
RTP-MIDI packets over UDP with MIDI bytes and timestamps
over SCTP, via WebRTC data channels, successfully.
At present, Cubase Pro’s GR feature limits the transmission of
MIDI control data to commands and functions commonly featured
on mainstream control surfaces. This restriction is due to control

0
1
2
3
4
5

Peer
1/2

Peer
1/3

Peer
1/4

Peer
1/5

Peer
1/6

Peer
1/7

Peer
1/8Av

g
pa

ck
et

 d
el

iv
er

y
tim

e
(m

s)

Peer connections

Increased fluctuations

Peers 1/2

Peers 1/3

Peers 1/4

Peers 1/5
Peers 1/6

Peers 1/7

Peers 1/8
Disconnections

C
PU

U

sa
ge

Time

Chrome

Cubase Pro 10

Signalling Server

surfaces requiring feedback from the DAW reflecting on-screen
execution operations, such as Mixer Console and Transport
functions, Insert, Send and VST instrument plug-in parameters and
channel-strip EQ settings. Future testing will encompass the use of
keyboard commands with keystroke-to-MIDI translation to address
the shortcomings of the GR’s range of functions.
The architecture has been implemented only in a limited scenario
and with mesh architecture only. Future work will implement and
analyse results of mixing and routing architectures and their scaling
capabilities through the inclusion of a media server. Testing will
also expand to include implementation over the Internet to measure
latencies and determine an acceptable delay threshold.
The MIDI 2.0 protocol, upon its release and mainstream
integration, could provide enhancements to the transport and
delivery of the application’s MIDI control data. Information
published by the MIDI Manufacturers Association (MMA) has
signposted an increase in the resolution of control messages from 7
bits up to 32 bits, and MIDI packets will include a jitter reduction
timestamp to improve timing accuracy [25]. Future work will
integrate the MIDI 2.0 messaging protocol to determine the scale
of improvement in the transport of data and the accuracy of
received data streams.

7. ACKNOWLEDGMENTS
This research is supported by the Australian Government Research
Training Program Scholarship.

8. REFERENCES
[1] Stickland, S., Scott, N. and Athauda, R. 2018. A Framework
for Real-Time Online Collaboration in Music Production. In
Proceedings of the ACMC2018: Conference of the Australasian
Computer Music Association (Perth, Australia, 6-9 December,
2018).

[2] Steinberg Media Technologies GmbH. 2018. VST Connect
Pro. Retrieved 6 May 2018 from
https://www.steinberg.net/en/products/vst/vst_connect/vst_connec
t_pro.html

[3] Source Elements. 2018. Source-Connect. Retrieved 20 June
2018 from http://source-elements.com/products/source-connect

[4] Steinberg Media Technologies GmbH. 2018. VST Transit:
The World of Music Cloud Collaboration. Retrieved 25 July 2018
from
https://www.steinberg.net/en/products/vst/vst_transit.html?et_cid=
15&et_lid=22&et_sub=VST%20Transit

[5] Avid Technology Inc. 2018. Avid Cloud Collaboration for Pro
Tools: How It Works. Retrieved 5 June 2018 from
http://www.avid.com/avid-cloud-collaboration-for-pro-tools/how-
it-works

[6] Spotify AB. 2019. Soundtrap - Make music online. Retrieved
9 September, 2019 from https://www.soundtrap.com/

[7] AmpTrack Technologies AB. 2019. Amped Studio 2 | Online
Beatmaker and Music Studio. Retrieved 9 September, 2019 from
https://ampedstudio.com/

[8] BandLab Technologies. 2019. BandLab: Music Starts Here.
Retrieved 9 September, 2019 from https://www.bandlab.com/

[9] Guitar Player Magazine. 2017. BandLab Collaborative App @
NAMM 2017. Video. (31 January, 2017). Retrieved 9 September,
2019 from https://www.youtube.com/watch?v=hYaOZll999g

[10] Lind, F. and MacPherson, A. Soundtrap: A collaborative
music studio with Web Audio. Queen Mary Research Online, City,
2017.
[11] Web Audio Conf. 2018. Collaborative Coding with Music:
Two Case Studies with EarSketch by Avneesh Sarwate. Video.
(28 September, 2018). Retrieved 10 September, 2019 from
https://www.youtube.com/watch?v=0qBVSCRpggg
[12] Sarwate, A., Tsuchiya, T. and Freeman, J. 2018.
Collaborative Coding with Music: Two Case Studies with
EarSketch. In Proceedings of the Web Audio Conference 2018
(Berlin, Germany, 19-21 September, 2018).
[13] Bachmann, C., Bischoff, H., Harris, L., Kaboth, C., Mingers,
I., Obrecht, M., Pfeifer, S., Schütte, B. and Sladek, M. (2018).
Cubase Pro 10, Cubase Artist 10 Operation Manual, Hamburg,
Germany: Steinberg Media Technologies GmbH., Retrieved 16
November 2018, from
https://steinberg.help/cubase_pro_artist/v10/en/Cubase_Pro_Artist
_10_Operation_Manual_en.pdf.
[14] Erichsen, T. 2016. rtpMIDI. Version 1.1.8. Computer
Program. Retrieved 15 April, 2018 from https://www.tobias-
erichsen.de/software/rtpmidi.html
[15] Lazzaro, J. and Wawrzynek, J. (2011). RTP Payload Format
for MIDI (RFC 6295), The IETF Trust, Retrieved 29 April, 2018,
from https://tools.ietf.org/pdf/rfc6295.pdf.
[16] Postel, J. (1980). User Datagram Protocol (RFC 768),
Internet Engineering Task Force, Retrieved 18 February, 2018,
from https://tools.ietf.org/pdf/rfc768.pdf.
[17] Schulzrinne, H., Casner, S., Frederick, R. and Jacobson, V.
(2003). RTP: A Transport Protocol for Real-Time Applications
(RFC 3550), The Internet Society, Retrieved 19 February, 2018,
from https://tools.ietf.org/pdf/rfc3550.pdf.
[18] Johnston, A. B. and Burnett, D. C. 2014. WebRTC: APIs and
RTCWEB Protocols of the HTML5 Real-Time Web. Digital Codex
LLC., St. Louis, United States of America.
[19] Dutton, S. 2012. Getting Started with WebRTC.
HTML5Rocks. Retrieved 24 July, 2018 from
https://www.html5rocks.com/en/tutorials/webrtc/basics/
[20] World Wide Web Consortium. 2015. Web MIDI API.
(March 17) Retrieved 30 July 2018 from
https://www.w3.org/TR/webmidi/
[21] Schmitt, D. 2019. LoopBe30. Version 1.6. Computer
Program. Retrieved 10 April, 2019 from
https://www.nerds.de/en/loopbe30.html
[22] World Wide Web Consortium. 2018. WebRTC 1.0: Real-
time Communication Between Browsers. (September 20)
Retrieved 14 September, 2018 from
https://www.w3.org/TR/webrtc/
[23] Levent-Levi, T. 2019. WebRTC Multiparty Architectures.
BlogGeek.Me. (15 April, 2019). Retrieved 2 June, 2019 from
https://bloggeek.me/webrtc-multiparty-architectures/
[24] Bernardo, G. G. 2014. WebRTC beyond one-to-one
communication. webrtcH4cKS. (4 February, 2014). Retrieved 2
June, 2019 from https://webrtchacks.com/webrtc-beyond-one-one/
[25] The MIDI Association. 2019. Details about MIDI 2.0, MIDI-
CI, Profiles and Property Exchange. MIDI News. (1 June, 2019).
Retrieved 3 June, 2019 from https://www.midi.org/articles-
old/details-about-midi-2-0-midi-ci-profiles-and-property-
exchange

	1. INTRODUCTION
	2. THE COLLABORATION FRAMEWORK
	2.1 Achieving synchronicity
	2.2 Cubase Pro 10
	2.2.1 Generic Remote
	2.2.2 Key Commands

	2.3 Control data streaming

	3. WEBRTC AND WEB MIDI APIs
	3.1 WebRTC
	3.1.1 getUserMedia method
	3.1.2 RTCPeerConnection API
	3.1.3 MediaStream API
	3.1.1 RTCDataChannel API

	3.2 Web MIDI
	3.2.1 MIDIAccess API
	3.2.2 MIDIInput and MIDIMessageEvent APIs
	3.2.3 MIDIOutput API

	3.3 Virtual MIDI ports
	3.4 Stream Control Transmission Protocol (SCTP)

	4. CONNECTION ARCHITECTURES
	4.1 Mesh
	4.2 Mixing
	4.3 Routing

	5. PROTOTYPE IMPLEMENTATION
	6. CONCLUSION AND FUTURE WORK
	7. ACKNOWLEDGMENTS
	8. REFERENCES

