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ABSTRACT 
Collaborative music production in online environments has seen a 
renewed focus as developers of Digital Audio Workstation (DAW) 
software include features that cater to limited synchronous 
participation and multiparty asynchronous collaboration. A 
significant restriction of these collaboration platforms is the 
inability for multiple collaborators to effectively communicate and 
seamlessly work on a high-fidelity audio project in real-time.  
This paper outlines the design of a browser-based application that 
enables real-time collaboration between multiple remote 
instantiations of an established, mainstream and fully-featured 
DAW platform over the Internet. The proposed application 
provides access to, and modification and creation of, high-fidelity 
audio assets, real-time videoconferencing and control data 
streaming for communication and synchronised DAW operations 
through Web Real-Time Communication (WebRTC) and Web 
MIDI Application Programming Interfaces (APIs). The paper 
reports on a proof-of-concept implementation and results, including 
several areas for further research and development. 

1.  INTRODUCTION 
Present online collaboration, facilitated by recent DAW-specific 
and -generic approaches, can be classified as either synchronous or 
asynchronous in design and operation. Synchronous approaches 
focus on sharing and editing music data in real-time. For effective 
and meaningful collaboration, this data consists of high-fidelity 
audio files and streams. However, current Internet bandwidths 
struggle to handle the real-time transfer of such data-intensive 
streaming and maintain the audio’s high fidelity. Thus, these 
collaborations are limited to a few participants at most. Conversely, 
asynchronous approaches forgo real-time online interactions in 
preference for increased numbers of remote participants and 
maintenance of the audio assets’ fidelity. Central to asynchronous 
collaboration is the uploading and downloading of lossless audio 
files to and from cloud storage linked to the DAW applications, or 
directly to and from collaborators’ local storage drives.  
Our previous research examined four widely-available approaches 
to DAW-integrated online collaboration [1]. Two synchronous 
collaboration platforms, Source Elements’ DAW-generic Source-
Connect Pro and Steinberg’s Cubase Pro-specific VST Connect 
Pro and VST Connect Performer bundle, not only restrict the 
number of participants but also access to the DAW project itself [2, 
3]. Synchronous collaboration necessarily requires compression of 
the project’s audio streams to reduce the effects of latency and jitter 

inherent in Internet data transport. Applying lossy audio codecs, 
though, result in a degradation of the audio’s fidelity. The two 
synchronous platforms do provide optional features to record, store, 
and stream lossless Pulse Code Modulation (PCM) audio files of a 
remote performer to replace jitter-affected files post-session. 
Data- and bandwidth-intensive audio streaming, and the 
complication of varying latencies between multiple, simultaneous 
connections, obliged Avid and Steinberg to approach online 
collaboration asynchronously, adopting a similar concept to that 
utilised by Source-Connect Pro’s, and VST Connect Pro’s, 
automatic PCM audio upload features. The two asynchronous 
platforms, Avid’s Cloud Collaboration and Steinberg’s VST 
Transit, are included features of their respective DAWs, Pro Tools 
and Cubase [4, 5]. By eschewing real-time collaboration, these 
approaches significantly increase participant numbers and provide 
universal access to a DAW project. Employing lossless audio 
codecs to compress the project’s PCM audio files before uploading 
maximises the available cloud storage capacity, reduces transfer 
times, and maintains the original audio’s high fidelity. 
Web browser-based platforms, such as Spotify’s Soundtrap, 
AmpTrack Technologies’ Amped Studio 2, and BandLab 
Technologies’ BandLab also offer asynchronous collaboration 
methods for multiple participants [6-8]. All provide users with the 
ability to share a DAW project with others, issuing invitations by 
either co-opting existing social media applications, such as 
Facebook and Twitter, email and Short Message Service (SMS), or 
in-application messaging to distribute a link to the project. In 
Amped Studio 2 and BandLab, sharing a DAW project creates 
multiple versions, or forks, of the project, one per collaborator, so 
that the integrity of the original project is preserved [7, 9]. 
Soundtrap adopts a collaboration model similar to VST Transit and 
Cloud Collaboration, where users can contribute and save to a cloud 
version of the project, then sync their local project with the one in 
the cloud asynchronously. 
Nevertheless, transferring large lossless audio files over the Internet 
takes time and bandwidth, meaning collaborators can only access, 
listen to, and assess project contributions post factum. 
Asynchronous collaboration can slow progress in this environment; 
contributions cannot be auditioned or modified in real-time, so the 
possibility of revisions, or indeed discarding material altogether, is 
significantly more likely. Soundtrap’s approach to minimising 
these consequences is to integrate a videoconferencing feature 
using the WebRTC API [10]. Lind and MacPherson [10] explain 
that a video chat feature enables ‘instant feedback with 
collaborators as they create projects together in real-time.’ It is 
worth pointing out that while the video chat feature is indeed 
synchronous, sharing contributions to, and modifications of, a 
project remain asynchronous.  
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Georgia Institute of Technology’s Centre for Music Technology’s 
EarSketch is an amalgam of a browser-based Python and JavaScript 
Integrated Development Environment (IDE), and a rudimentary 
DAW for the playback and manipulation of audio samples via 
scripts [11]. Their recent developments focus on collaborative 
script editing through the use of an operational-transform algorithm 
via WebSockets, and time synchronisation utilising Network Time 
Protocol’s (NTP’s) clock-synchronisation algorithm [12]. It, 
however, lacks the requisite processing capabilities for professional 
mixing and mastering activities. 
Currently, mainstream and web browser-based DAW platforms 
cannot facilitate synchronous, multi-party collaboration and 
communication, where all participants, irrespective of location, can 
simultaneously access, edit and contribute to professional, 
specialised activities such as post-production mixing and 
mastering. Repositioning such activities as an online collaborative 
undertaking presents several challenges and requirements. 
Latency, Jitter, Bandwidth and High-Fidelity audio assets: 
Expert post-production activities require the use of high-fidelity 
audio files. In particular, professional mixing of multitrack 
recordings for commercial CD and streaming-service release 
require audio files with a sample rate of 44.1 or 48 kHz, at the very 
least, to avoid heavy anti-aliasing filtering. Similarly, audio file bit 
depths of 16- or 24-bit are necessary to reduce the noise floor and 
create more headroom. Streaming these assets in real-time is 
challenging considering high-fidelity audio is, by its very nature, 
bandwidth-intensive. Furthermore, streaming over the Internet 
utilising reliable transport layer protocols such as Transmission 
Control Protocol (TCP), increases latency, whereas, the use of 
‘best-effort service’ protocols such as User Datagram Protocol 
(UDP) can reduce delays (latency) but does not guarantee reliable 
delivery, resulting in lost packets (jitter).  
A benefit of existing asynchronous collaboration methods is the 
ability to preserve the DAW project’s high-fidelity audio files; 
however, existing synchronous approaches rely upon lossy audio 
streams [2, 3]. Therefore, a way to access and modify high-fidelity 
audio files in synchronous multi-party collaborative environments 
is needed. 
Access to, and synchronous operation of, a DAW platform: 
Existing asynchronous DAW-specific multi-party solutions grant 
each participant equal access to the music production project via 
their local DAW instantiation. Providing such equal access to a 
collaborative, specialised DAW platform in real-time, though, is 
currently lacking. 
Real-time communication methods: Cloud Collaboration, VST 
Transit, Amped Studio 2 and BandLab, while catering for multiple 
collaborators, only provide asynchronous text messaging 
communication [4, 5, 7, 8]. While the VST Connect Pro/Performer 
bundle and Soundtrap include effective real-time video streaming, 
the communication is just peer-to-peer (P2P) [2, 6].   
Videoconferencing is highly desirous in a multi-party, real-time 
collaboration environment. 
The design of the DAW collaboration application presented in this 
paper aims to address the challenges and requirements outlined 
above. 

2.  THE COLLABORATION FRAMEWORK 
Figure 1 illustrates the infrastructure and data flow of a proposed 
music production collaboration framework. 

Each collaboration endpoint runs a local DAW instantiation. Every 
participant downloads and opens a previously uploaded 

collaborative DAW project in cloud storage to each collaborator’s 
DAW instantiation before the collaboration session. The Signalling 
Server negotiates and instigates the WebRTC peer connections, 
while the Media Server is used to synchronise and manage the real-
time communication and MIDI control data streams among 
multiple collaborators. The following sections discuss the 
architecture in detail. 

 
Figure 1. The proposed collaboration framework’s 

architecture and data flow. 
The proposed framework (see Fig. 1) avoids high-fidelity audio 
streaming for the collaboration project’s playout and source of new 
audio material. The framework employs cloud storage and file 
sharing to distribute the DAW project and its audio assets to all 
participants before a collaboration session begins. The participants 
employ their local DAW instantiation’s playback for monitoring 
the project’s audio. Streaming lower-volume timecode facilitates 
collaborative synchronous operation and aligns the playback of 
remote DAW instantiations’ locally-stored high-fidelity audio 
assets. While not eradicating latency, this approach dramatically 
reduces its effects by avoiding bandwidth-intensive, high-fidelity 
audio transmissions in real-time. Each participant is ignorant of the 
slight differences in timing across the collaboration. 

2.1  Achieving synchronicity 
DAW instantiations are capable of synchronising their playback 
utilising three mechanisms: machine control, clock source and 
timecode [13]. Together, they deliver transport commands, 
positional references in time, and speed references. The MIDI 
paradigm includes MIDI Timecode (MTC) and MIDI Machine 
Control (MMC) protocols. MTC has the additional benefit of 
functioning as a clock source; therefore, MTC and MMC together 
institute synchronised playback by establishing a master/slave 
configuration across the collaboration (see Fig. 2).  

 
Figure 2. Synchronised playback of DAW instantiations 

through the streaming of MTC and MMC. 



Incumbent on the framework is providing an equitable and 
inclusive ability to edit the collaboration project and its audio 
assets. All of the collaboration’s DAW instantiations must also 
execute the on-screen modifications, made by any individual end-
user to their local DAW project, in real-time. Doing so provides 
synchronised editing and navigation across the collaboration. We 
have chosen Cubase Pro 10 to be the framework’s DAW platform, 
as discussed in the next section. 

2.2  Cubase Pro 10 
The rationale for choosing Cubase Pro 10, beyond its calibre as a 
professional, industry-standard DAW for post-production 
activities, includes the ability to create user-defined MIDI 
command maps implementing its Generic Remote feature, the 
ability to create user-defined keyboard shortcuts (Key Commands) 
and its MTC and MMC external synchronisation capabilities. 

2.2.1  Generic Remote 
The Generic Remote (GR) feature allows users to tailor the 
operation of a generic MIDI controller to most any of Cubase’s 
functions [13]. For our purposes, the GR provides significant utility 
for transmitting and receiving MIDI control data mapped to the 
DAW’s functions, navigation and transport. The GR creates 
bespoke MIDI maps, linking specific MIDI Continuous Controllers 
(CCs) and notes to DAW commands and operations (see Fig. 3). 
Users can assign the GR’s MIDI input and output ports from a list 
of the computer’s available MIDI devices. 

2.2.2  Key Commands 
Keyboard shortcuts are a common feature of many software 
applications, designed to enhance productivity by reducing the 
number of mouse moves and clicks. Cubase Pro includes numerous 
keystroke combinations linked to DAW operations, including an 
increasing number of homogeneous DAW-generic combinations. 
Cubase Pro’s key commands can be tailored to map specific 
keystroke patterns to almost any DAW function or operation. 

 
Figure 3. Cubase Pro 10’s Generic Remote page. 

2.3  Control data streaming 
One of the framework’s significant efficiencies must be its ability 
to effectively and reliably stream MIDI control data to all 
participants over the Internet. Successful tests of Cubase Pro’s GR 
MIDI mapping utilised the OSX MIDI network driver on Mac and 

Tobias Erichsen’s rtpMIDI driver software [14] on Windows 
computers to establish remote network connections between MIDI 
ports. Employing the RFC 6295 Real Time Protocol (RTP) payload 
format for MIDI messages (RTP-MIDI), the drivers map MIDI 1.0 
data onto RTP streams over UDP [15]. These ports were assigned 
to their corresponding GR’s input and output ports (see Fig. 4), and 
each GR instance was configured identically by importing a mutual 
XML mapping file. 

RFC 768 UDP [16] is an inherently best-effort transport service that 
is suited to real-time transmissions. UDP lacks reliable data transfer 
characteristics. Nevertheless, RTP offered a degree of reliability 
through error correction and concealment strategies to deal with 
lost packets when combined with the Real-Time Control Protocol 
(RTCP) [17].  

 
Figure 4. Using connected network MIDI ports over the 

Internet to test Cubase Pro’s Generic Remote interactivity. 

3.  WEBRTC AND WEB MIDI APIs 
This section outlines the use of Web RTC and Web MIDI APIs to 
implement the proposed architecture. In order to implement the 
framework, the application needs to: (a) access a collaborator’s 
computer webcam and microphone; (b) create secure connections 
between the online participants; (c) provide a secure 
videoconferencing capability; (d) gain access to MIDI ports 
assigned to Cubase Pro’s GR; (e) create secure, semi-reliable, 
configurable data channels between the online participants; and (f) 
route MIDI control data to and from Cubase Pro and the data 
channels for synchronous streaming over the Internet. Exploiting 
the WebRTC and Web MIDI APIs can achieve all of these 
requirements. 

3.1  WebRTC 
3.1.1  getUserMedia method 

The getUserMedia() method is one of the most common ways to 
access local webcam and microphone media devices, thus creating 
a local media stream [18]. In the interests of privacy, only once a 
user gives permission, the browser can access the local media 
devices. 

3.1.2  RTCPeerConnection API 
WebRTC’s RTCPeerConnection interface is its fundamental 
basis and establishes a connection between two endpoints, or peers, 
over the Internet. Once established, the connection provides direct 
bidirectional P2P communication without requiring an intervening 
server. Reducing the distance data needs to travel similarly reduces 
the latency it incurs. For the interface application, the 
RTCPeerConnection can facilitate both media and data flow 
between collaborators. 



3.1.3  MediaStream API 
A media stream comprises of two tracks, one each for video and 
audio, with each track comprising of one or more channels; for 
example, a stereo audio track consists of separate left and right 
channels. The MediaStream interface creates an object by 
grouping the local media tracks, thus defining each participant’s 
media stream. The flow of MediaStream objects over an 
RTCPeerConnection facilitates the collaboration framework’s 
videoconferencing. 

3.1.1  RTCDataChannel API 
The WebRTC RTCDataChannel interface creates an additional 
bidirectional channel over an RTCPeerConnection for the 
simultaneous transmission of arbitrary data with similarly low 
latency and high throughput [19]. The RTCDataChannel interface 
was modelled closely on the WebSockets API, and consequently, 
their methods (e.g. send()) and handlers (e.g. onmessage) behave 
similarly [18]. The transmission between participants of the 
framework’s MIDI control data occurs over these data channels. 

3.2  Web MIDI 
3.2.1  MIDIAccess API 

Web MIDI’s MIDIAccess interface supplies methods to list the 
MIDI input and output ports available to the browser and provide 
access [20]. The navigator.requestMIDIAccess() method 
and onMIDISuccess handler allows the framework’s interface 
application, and by extension the participants, to nominate input 
and output ports that correspond to Cubase Pro’s GR ports, 
consequently establishing the crucial link between Cubase Pro and 
the interface application. 

3.2.2  MIDIInput and MIDIMessageEvent APIs 
The success of the browser-based application to act as an interface 
between Cubase Pro and the larger collaboration infrastructure 
depends upon bidirectional transfer of MIDI control data to and 
from a DAW’s GR MIDI ports, to and from a created 
RTCDataChannel. 
The MIDIMessageEvent interface achieves one direction when 
passing an event object, in this case, a MIDI 1.0 message, to a 
MIDIInput port’s onmidimessage handler upon receiving 
control data from the GR output port. Each event object consists of 
a Uint8array comprising MIDI message data bytes and a high-
resolution timestamp [20] and is transmitted via the send(event) 
method on the RTCDataChannel (see Fig. 5). 

 
Figure 5. The interface application’s use of WebRTC and 

Web MIDI APIs, methods and handlers. 

3.2.3  MIDIOutput API 
The Web MIDI MIDIOutput interface and its send() method 
realise the application’s other directional interfacing, together with 
the RTCDataChannel interface’s onmessage event handler. The 
data channel’s onmessage handler receives a control data event 
object, which transmits the MIDI data bytes and timestamp over the 
MIDIOutput interface’s MIDI port (see Fig. 5). 

3.3  Virtual MIDI ports 
The most productive way to link the GR and corresponding 
interface application input and output ports are via virtual MIDI 
ports. For the tests conducted so far, a third-party MIDI driver, 
LoopBe30 by nerds.de [21], has created ports for the internal 
connections between Cubase Pro and the interface. However, plans 
are for the application to feature its own virtual MIDI driver and 
ports in the future. 

3.4  Stream Control Transmission Protocol 
(SCTP) 
WebRTC data channels utilise the RFC 4960 Stream Control 
Transmission Protocol (SCTP) for their implementation and 
delivery. Johnston and Burnett state that SCTP “provides useful 
features not available in TCP, including reliable or semi-reliable 
delivery, non-ordered delivery of packets, multiple streams within 
an SCTP association, and an ability to send messages.” [18]. Of 
particular importance to the collaboration framework is SCTP’s 
semi-reliable and non-ordered delivery of data packets, in addition 
to the RTCDataChannel interface’s maxPacketLifeTime and 
maxRetransmits unsigned shorts and ordered Boolean 
attributes [22]. Further testing and tuning are needed to determine 
optimal values for such parameters. 

4.  CONNECTION ARCHITECTURES 
While WebRTC is primarily designed to establish a P2P 
connection, three different approaches can create multi-party 
collaborations: (a) Mesh, (b) Mixing, and (c) Routing [23]. 

 
Figure 6. The mesh, mixing and routing architectures. 

4.1  Mesh 
As the name suggests, each participant constructs the mesh 
architecture by establishing a peer connection with every other 
participant (see Fig. 6). While it is relatively simple to implement 
and requires no backend infrastructure, it is limited in its ability to 
scale to a large number of participants and is CPU- and bandwidth-
intensive as the number of participants increases [24]. 

4.2  Mixing 
A mixing architecture requires the integration of a Multipoint 
Control Unit (MCU) into the multi-party architecture. Its 
construction involves each participant establishing a peer 
connection with the MCU only (see Fig. 6). It is the MCU’s task to 
receive and mix the individual media streams, then send the mixed-
media stream to the participants [24]. Each endpoint assumes it is 
interacting with another single endpoint.    



4.3  Routing 
A routing, or relay, architecture requires the integration of a 
Selective Forwarding Unit (SFU) where each participant 
establishes a peer connection with the SFU only (see Fig. 6). Unlike 
an MCU, an SFU forgoes transcoding of the media streams, instead 
deciding which of the media streams to forward on to the 
participants [23]. Each participant receives the routed media and 
data streams of all other participants in the collaboration. 

5.  PROTOTYPE IMPLEMENTATION 
This section describes the results of a prototype implementation of 
the DAW collaboration application. The prototype implementation 
utilises a mesh architecture (which is the simplest to implement) to 
interact with peers. Although mesh architecture is not scalable to a 
large number of participants, the prototype demonstrates the 
feasibility of the proposed application. Table 1 summarises the 
resources used in the implementation.  

Table 1. Resources for the P2P Mesh Test. 
Computer 1 (Peer 1, 
Signalling Server) 

i5-7300U 2.6 GHz CPU; 16 GB RAM; 
Windows 10 Enterprise OS 

Computer 2 (Peers 2, 4, 6, 
8) 

i7-8700K 3.7 GHz CPU; 32 GB RAM; 
Windows 10 Pro OS 

Computer 3 (Peers 3, 5, 7) i7-3610QM 2.3 GHz CPU; 12 GB 
RAM; Windows 7 Home Premium OS 

LAN Speed 1 Gbps 

Browser Chrome 75 

DAW Cubase Pro 10 

Application-Layer Protocol HTTPS 

Signalling Server Built using socket.io on node.js 

 
The application’s media and data streams were stable up to and 
including the addition of the sixth peer, though the time taken for 
the signalling process to establish each connection was noticeably 
longer with each new addition. While there was a perceptible 
increased latency in the playback and execution of functions across 
the DAW instantiations, this perception was only due to having all 
three computers in the one physical space. 
The addition of the final two peer connections, however, saw a 
marked deterioration in stability, including frozen video streams, 
increasingly distracting audio stream jitter, and a progressive lack 
of DAW responsiveness and extended delays in executing data-
heavy functions such as level fader operations. Figure 7 plots 
Computer 1’s transmission and reception rates of WebRTC-related 
packets. 

 
Figure 7. Peer 1 packets transmitted and received per sec. 

Latency across the mesh architecture increased exponentially as 
each new peer joined the collaboration, as demonstrated by Figure 
8’s plot of Peer 1’s packet delivery times. With a single P2P 
connection, the average delivery time was 0.47 ms and increased 
by 0.18 ms and 0.15 ms with the addition of the next two peers, 
respectively. However, the addition of connections to Peers 7 and 
8 saw increases of 0.82 ms and 2.09 ms, respectively.  

 
Figure 8. Peer 1 connections: average packet delivery times. 

Figure 9 plots the percentage of Computer 1’s overall CPU capacity 
utilised by the framework’s three processes, namely Chrome.exe, 
Cubase10.exe, and Node.exe. At peak consumption, which 
coincided with 15 mesh connections and data-intensive Cubase Pro 
10 operation, the processes accounted for 66.43% of the 2.6 GHz 
CPU. At the same time, the computer’s overall percentage of CPU 
usage measured just over 93%. 

 
Figure 9. Peer 1 CPU usage percentage: Chrome Browser 

(blue), Cubase Pro 10 (green), Node Signalling Server (red). 
 

6.  CONCLUSION AND FUTURE WORK 
This paper presented the design of a browser-based DAW 
collaboration framework that aims to provide multi-party real-time 
collaboration. The framework addresses many of the shortcomings 
of existing approaches – including access to high-fidelity audio 
assets by collaborators, equal access to a DAW project, multi-party 
real-time video-conferencing and others. The paper also outlined a 
prototype implementation using Web RTC and Web MIDI APIs as 
a proof-of-concept. The results are promising. 
Future work will determine the most reliable and timely delivery 
methods, having demonstrated the ability to replace the transport of 
RTP-MIDI packets over UDP with MIDI bytes and timestamps 
over SCTP, via WebRTC data channels, successfully. 
At present, Cubase Pro’s GR feature limits the transmission of 
MIDI control data to commands and functions commonly featured 
on mainstream control surfaces. This restriction is due to control 
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surfaces requiring feedback from the DAW reflecting on-screen 
execution operations, such as Mixer Console and Transport 
functions, Insert, Send and VST instrument plug-in parameters and 
channel-strip EQ settings. Future testing will encompass the use of 
keyboard commands with keystroke-to-MIDI translation to address 
the shortcomings of the GR’s range of functions. 
The architecture has been implemented only in a limited scenario 
and with mesh architecture only. Future work will implement and 
analyse results of mixing and routing architectures and their scaling 
capabilities through the inclusion of a media server. Testing will 
also expand to include implementation over the Internet to measure 
latencies and determine an acceptable delay threshold. 
The MIDI 2.0 protocol, upon its release and mainstream 
integration, could provide enhancements to the transport and 
delivery of the application’s MIDI control data. Information 
published by the MIDI Manufacturers Association (MMA) has 
signposted an increase in the resolution of control messages from 7 
bits up to 32 bits, and MIDI packets will include a jitter reduction 
timestamp to improve timing accuracy [25]. Future work will 
integrate the MIDI 2.0 messaging protocol to determine the scale 
of improvement in the transport of data and the accuracy of 
received data streams. 
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