An AudioWorklet-based Signal Engine
for a Live Coding Language Ecosystem

Francisco Bernardo
Emute Lab, Dept. Music
University of Sussex
F.Bernardo@sussex.ac.uk

ABSTRACT

This paper reports on early advances in the design of an
ecosystem for creating new live coding languages, optimal
for audio synthesis, machine learning and machine listen-
ing. We present the design rationale and challenges when
applying the Web Audio API, and in particular, an Au-
dio Worklet-based solution to refactoring our digital signal
processing library Maximilian.js for our high-performance
signal synthesis engine. Furthermore, we contribute with a
new system implementation, engineered for modern web ap-
plications, and for the live coding community to design their
own idiosyncratic languages and interfaces applying our sig-
nal engine. The evaluation shows that the system runs with
high reliability, efficiency and low latency.

1. INTRODUCTION

Since its introduction in 2011, the Web Audio API
(WAAPI) [18] has powered a substantial number of li-
braries and applications for interactive sound and music.
Among WAAPI-powered libraries, there have been varied
approaches and features provided: from high-level control
and abstractions over WAAPI graphs and native nodes (e.g.
Tone.js [12]), to abstractions with low-level digital signal
processing (DSP) using optimised JS (e.g. Genish.js and
Gibberish.js [14]), asm.js (e.g. Maximilian [6]) and We-
bAssembly (e.g. Faust [10], CSound [9]). Some of these
libraries which initially implemented custom nodes using
ScriptProcessorNode, with its inherent limitations (e.g. la-
tency, main thread interrupts), have been shifting towards
utilising Audio Worklet 3| (e.g. Faust, CSound, Genish.js).
Such improvements have been used previously in advanc-
ing the design of live coding environments for the Web that
enable custom low-level DSP and high-level control of mu-
sical processes |14], and that support end-user live coding
language design [19].

Client-side Web-based machine learning middleware have
shown recent and meaningful advances (e.g. Tensorflow.js
[16], Magenta.js |13], ml5.js [15], RapidLib.js [7]). These li-
braries enable end-to-end client-side machine learning work-
flows with many benefits, including simplified deployment

Licensed under a Creative Commons Attribution 4.0 International License (CC BY
4.0). Attribution: owner/author(s).

Web Audio Conference WAC-2019, December 4-6, 2019, Trondheim, Norway.

(© 2019 Copyright held by the owner/author(s).

Chris Kiefer
Emute Lab, Dept. Music
University of Sussex
C.Kiefer@sussex.ac.uk

Thor Magnusson
Emute Lab, Dept. Music
University of Sussex
T.Magnusson@sussex.ac.uk

with “zero install,” instant access across platforms, data
privacy and, in the cases of Tensorflow.js -based libraries,
hardware acceleration. Common to these libraries has been
a strong consideration for developer-friendly experience de-
sign, particularly in relation to API abstraction level and
learning resources, documentation and examples. There
are also significant challenges involved, concerning varying
client-side hardware and the progress of the web browser
ecosystem.

We believe that the improvements in these Web technolo-
gies can afford the evolution of an ecosystem of real-time,
user-defined, live coding languages that combine machine
learning, machine listening and audio threads. Previous at-
tempts to integrate real-time interactive audio and machine
learning in a scalable and accessible environment such as
the Web, have been fraught with technical limitations of the
single-threaded JavaScript (JS) environment and the Web
Audio API ScriptProcessorNode (SPN) [7]. We contribute a
novel system design for live coding with a high-performance
signal engine leveraging the Maximilian DSP library tran-
spiled for Audio Worklef']

The paper is structured as follows: we first present the
requirements and a proposal for a middleware architecture
that integrates signal synthesis and processing, machine
learning and live coding language design for client-side Web
applications. Section 3 presents the elements of our design
strategy and rationale for refactoring Maximilian 6] for an
Audio Worklet-based signal engine. Section 4 describes the
implementation and first use of an early signal engine proto-
type for a live coding performance. Section 5 discusses some
of the main limitations for the audio worklet implementa-
tion and section 6 concludes with the main takeaways and
future work.

2. INTEGRATED ARCHITECTURE OF
SIGNAL SYNTHESIS AND MACHINE
LEARNING, FOR A WEB-BASED LIVE
CODING ECOSYSTEM

In 2018, we conducted a survey on language design with
communities of practitioners of live coding, machine listen-
ing, machine learning and deep learning [8]. We asked par-
ticipants which features they envisioned for future live cod-
ing environments and languages that could integrate ma-
chine listening and machine learning. The findings indicated
a wide space of possibilities. Respondents suggested features

Thttps://github.com /mimic-sussex,/Maximilian

https://github.com/mimic-sussex/Maximilian

ul Main JS thread

Documentation Signal Engine

subsystem

Main
Controller

maximilian.util.js
A I

Live Grammar

Audio thread

Audio Worklet Processor Maximilian C++

maximilian.wasm.js

| WebAssembly module compiled

Editor :
Live Coding Audio Worklet Node
Editor -|>{ .port.postMessage I

CodeMirror code injection

" bidirectional
asynchronous messaging

| .port.onmessage ahead-of-time with Emscripten

dynamic code evaluation

Worker thread v AST to serialized JS

Language Processor ’ Abstract Syntax Tree ‘

*<<generates>>

Nearley Parser Generator

» Parser

Intermediate Language

<<generates>>

Worker thread

Worker thread

Machine Listening

Machine Learning

|

MMLL.js I ‘ RapidLib.js ” Magenta.js ” Tensorflow.js

Figure 1: Diagram of the architecture of Sema, our live coding language design system.

such as support for hybrid approaches and multi-paradigm
languages (i.e. object-oriented and functional), flexible, ex-
pressive and extensible languages and prototyping environ-
ments, good quality documentation and examples, as well as
a clear and informative error report system. In a nutshell:
brevity, simplicity, expressivity, flexibility, adaptability and
plurality.

These findings prompted us to build Sema, a modern Web-
based system (Figure to support rapid prototyping of
multiple mini-languages for live coding, enabling users to
satisfy their idiosyncratic expressive preferences. It seemed
wiser to make a system where the user creates or refines their
favourite language, rather than trying to satisfy everyone
with one general design. Considering also the history and
tradition of live coders building their own systems |11], this
decision would contribute to a plurality of systems in a field
that is already brimming with inventive solutions. Our de-
sign exploration will help us find and refine the constraints,
meta constraints and features for our system to support live
coding language design.

2.1 Design requirements for a live coding sys-
tem’s signal engine

In order to support a broad spectrum of live coding lan-
guages that ranges from abstract high-level languages to
more powerful low-level languages, we strive for an adequate
compromise between simplicity and flexibility. The follow-
ing are the design principles that guided the implementation
of our signal engine:

Integrated signal engine There is no conceptual split be-
tween the intermediate language and signal engine.
Everything is a signal.

Single-sample signal processing Per-sample sound pro-
cessing affords a broad set of sound control and syn-
thesis processes, including more sophisticated and ex-
pressive techniques that use feedback loops, such as
physical modelling, reverberation and infinite impulse
response filtering |17].

Sample rate transduction It is simpler to do signal pro-
cessing with one principal sample rate, i.e. the audio

rate. Different sample rate requirements of dependent
objects can be resolved by upsampling and downsam-
pling, using a ‘transducer’. The ‘transducer’ analogy
enables us to accommodate a variety of processes with
varying sample rates (e.g. video, spectral rate, sensors,
ML model inference) within a single engine.

Minimal abstractions There are no high-level abstrac-
tions such as buses, synths, nodes, servers, or any
language scaffolding in our signal engine. Such ab-
stractions sit within the end-user mini-language design
space.

We prioritise usability and learnability in the design of
our signal engine and intermediate language. As such, some
of these design principles prioritise usability over efficiency
(e.g. single-sample processing [20]). Nevertheless, we are
balancing out any performance trade-offs with a highly effi-
cient implementation (as demonstrated in section .

2.2 ML and MML workers

We are designing machine learning (ML) and musical ma-
chine listenin% (MML) as first-class citizens and core com-
ponents of our system. Typically, both ML and MML pro-
cesses have computationally intensive stages that are better
suited for execution on a dedicated thread, or eventually, in
an external process. Even with interactive machine learn-
ing workflows 2], where end-users build custom ML models
from small, lightweight, user-created data sets, having the
main JS thread freeze while an ML algorithm trains a model,
causes critical usability issues and undermines the user ex-
perience of any application [1]. As such, ML and MML
processes in our system follow a loosely coupled architec-
ture based on JS workersﬂ threads which leverage multi-
core CPUs and communicate using asynchronous message
exchange and event streams with the main thread. These
processes also adhere to our transducer concept, in that the
sample rates from the event streams they generate are con-
verted to and from the sample rate of the audio context.

Zhttps://mimicproject.com/guides/mmll
3https://w3c.github.io/workers/

https://mimicproject.com/guides/mmll
https://w3c.github.io/workers/

2.3 Live code and grammar editors

After some experimentation integrating editor compo-
nents such as Aceﬂ Monaccﬂ and CodeMirrorEl we opted
for the latter. Our choice considered multiple criteria, such
as component architecture, community adoption, mainte-
nance and support, and ease of integration with Webpackﬂ
CodeMirror powers two editor instances in our web-based
live coding environment, which consist of the main user-
facing components—the live coding and live grammar edi-
tors. A responsive live coding editor provides the user with
both manual and continuous evaluation. The grammar edi-
tor enables users to specify, inspect and customise different
mini-language grammar specification. Both editors will inte-
grate with an interactive documentation subsystem compris-
ing conceptual knowledge guides, tutorials and examples.

2.4 Language processor and intermediate
language

In order to parse, validate and evaluate instances of a live
coding language from textual input in the editors, we need
to be able to define its formal grammar. We opted for Near-
ley.js, a toolkit and library that implements the Earley [5]
algorithm to generate JS parsers from formal grammar spec-
ification in the Backus-Naur Form (BNF). Nearley allows a
broader set of grammars than parsing expression grammars,
a formalism which has been previously used in live coding
language design (e.g. PEG.js |19] and Ohm-jﬁEI)7 including
ambiguous grammars with left-side recursion.

The trade-off for the versatility and flexibility of Near-
ley is performance. Even with the integration of a to-
keniser for higher parsing performance, benchmarks mea-
sured across browsers on a large JavaScript Object Notation
(JSON) ﬁleﬂ show that Nearley scores below domain specific
language (DSL) and hand-written parser implementations,
parsing libraries, and other parser generators. Nevertheless,
preliminary tests that we present later in this paper show
that its performance is reasonable for the latency require-
ments of live coding in which, typically, small files and code
snippets are evaluated.

3. DESIGN STRATEGY: REFACTORING
MAXIMILIAN FOR AUDIO WORKLET

At the core of our signal engine is Maximilian [7]. It is
a free, open source and MIT-licensed audio synthesis and
signal processing library implemented in C++. Maximil-
ian was designed as a cross-platform and easy-to-use library
for artists and creative computing students, and for rapid
prototyping and commercial software development of inter-
active audio applications. The library provides a high-level
interface to a comprehensive set of DSP primitives, includ-
ing oscillators with standard waveforms, envelopes, filters
with resonance, sample playback, delay lines, Fast Fourier
Transform (FFT), granular synthesis, feature extraction,
and multi-channel support.

Previously, Maximilian was transpiled to an asm.js li-

4 Ace Editor, https://ace.c9.io0/

®Monaco Editor, https://microsoft.github.io/monaco-editor
5CodeMirror, https://codemirror.net

"Webpack, https: / /webpack.js.org/

80Ohm-js, https://github.com /harc/ohm

9https:/ /sap.github.io/chevrotain/performance/

brary using Emscripten [21]@ The output consisted of
single file with asm.js appended with custom JS—e.g. a
pre-assembled WAAPI graph with a user-definable closure
injected at the audio callback of a SPN, JS TypedArray con-
version to emscripten native types and asynchronous sample
loading. This library provided a simple framework and ab-
straction over the WAAPT graphs and nodes. Most usefully,
the closure bound to the scope of the SPN audio callback
provided users with a sandbox for accessing the audio buffer
directly and implementing custom signal processing for in-
teractive audio applications with Maximilian DSP classes.

While this solution revealed useful to end-users, particu-
larly for teaching students about DSP and audio with the
accessibility and convenience of a Web environment [7], it
suffered from the well-known limitations of SPN [3]. In
earlier studies [1], we assessed users integrating Maximilian
with machine learning and different data sources for rapid
prototyping interactive audio applications. The main thread
interrupts at the ML-training stage resulted in audio glitches
and freezes that frustrated users. These usability issues were
considered critical and would clearly undermine the adop-
tion of these tools.

In order to overcome the SPN issues, and to arrive at a
more scalable, efficient and usable design for a signal engine,
we decided to advance towards an AudioWorklet-based im-
plementation, and to refactor Maximilian.js accordingly.

3.1 WebAssembly generation with Em-
scripten

Refactoring Maximilian.js for AudioWorklet implied
changing the build process to generate Wasm instead of
asm.js. Compiling Maximilian to Wasm caused a breaking
change that rendered the Maximilian DSP types unavailable
in the SPN callback at load time, due to the asynchronous
Wasm module instantiation. To ensure retro-compatibility
to Maximilian.js SPN users, we restructured the build pro-
cess to provide conditional builds of the library. The SPN
version is modularised, exports with library name, and pro-
vides embindings with smart-pointer constructors for auto-
mated memory management and garbage collection of the
DSP types. The Wasm version of the module was trimmed
down and now only contains the embindings for loading the
DSP classes in the AudioWorkletProcessor (AWP) scope
with normal constructors for finer control over object dis-
posal. Listing 1 shows an excerpt of the embinding for maz-
10sc, Maximilian’s native type for standard wavetable oscil-
lators.

Listing 1: Excerpt of Maximilian maxiOsc embinding

class_<maxiOsc>("maxiOsc")

#ifdef SPN
.smart_ptr_constructor ("shared_ptr<
maxiOsc>", &std::make_shared<maxiOsc
>)
#else
.constructor <>()
#endif
.function("sinewave", &maxiOsc::sinewave)
.function("saw", &maxiOsc::saw)

The design patterrm for AudioWorklet with WebAssem-
bly provides a restricted set of Emscripten compilation flags.

Ohttps://gitlab.doc.gold.ac.uk /mick /maxi-js-emscripten

Hhttps://developers.google.com /web /updates/2018,/06/
audio-worklet-design-pattern

https://ace.c9.io/
https://webpack.js.org/
https://github.com/harc/ohm
https://sap.github.io/chevrotain/performance/
https://gitlab.doc.gold.ac.uk/mick/maxi-js-emscripten
https://developers.google.com/web/updates/2018/06/audio-worklet-design-pattern
https://developers.google.com/web/updates/2018/06/audio-worklet-design-pattern

We found that some of the previously used compilation flags,
such as MODULARIZE and EXPORT_NAME prevented the WASM
module to load successfully and were removed.

CFLAGS=--bind -01 -s WASM=1 -s SINGLE_FILE=1
-s BINARYEN_ASYNC_COMPILATION=0 \

-s ABORTING_MALLOC=0 -s ALLOW_MEMORY_GROWTH=1 \
-s TOTAL_MEMORY=128M

To support the strategy of dynamic code evaluation, we
found that it was necessary to add a compilation option to
control the Wasm heap memory expansion. We will discuss
this further in Section [B

3.2 Audio worklet code injection

Upon the introduction of Audio Worklet, a few commu-
nity examples emerged that use dynamic code injection (e.g.
dsp.audio’s Worklet EditorE and A. Carabott’s Live Coding
Playgrounﬂ. These examples de-serialise worklet proces-
sor templates in vanilla JS using Blob, manipulate them,
and hot-swap them from memory into the worklet as inter-
changeable modules. Our first attempts explored this pat-
tern using code generation and the additional constraint of
dynamically loading the Maximilian Wasm module into the
AWP scope. This constraint introduced a series of difficul-
ties revealed by the “FError on loading worklet: DOMFExcep-
tion” error message. The ambiguity of the error message
and the constraints of the AWP scope caused a challenging
debugging process.

To solve this problem, we considered tactics such as dy-
namic imports, fetch, and wasm-through-‘message port’, as
suggested in WAAPI discussion forum. We found out that
the AWP scope excluded some of the APIs that enable the
first alternatives. We also found out through StackOver-
ﬁOWE that the opaque origin of the worklet processor re-
quires absolute URIs to load the module asynchronously.
This unveiled another problem related to the unsuccessful
parsing of the Wasm module when it was imported by pro-
cessor code that was generated and loaded dynamically from
a Blob. Eventually, we turned to a more creative solution.

3.3 Parsing, evaluation and execution of user-
defined code

The broader design of our livecoding system will be dis-
cussed in a forthcoming paper. Here we present the solution
that we have arrived at for supporting the evaluation of user-
defined DSP code. Fundamentally, it consists in utilising the
worklet processor as a template that imports the Maximil-
ian Wasm module and loads its DSP classes into the AWP
scope. The AWP is where the DSP code is injected and
dynamically evaluated.

In our system, when users evaluate an expression in the
live coding editor—i.e. by pressing Cmd-Enter after select-
ing an expression or placing the cursor on a given line in
the editor—they are triggering a specific workflow in our
system (Figure [1)). First, the user-evaluated expression is
parsed by the Nearley-generated parser. If the expression
is valid according to the language formally defined by the
BNF grammar specification, the parser outputs an Abstract
Syntax Tree (AST), a tree-like data structure that breaks

12yWorklet editor, http://dsp.audio/editor
3https: //acarabott.github.io/audio-worklet-live-coding
http://bit.ly /2F4vZKM

down the user expression. The AST is converted into se-
rialised JS expressions that specify which Maximilian DSP
objects are used and how they are assembled into DSP func-
tions that will run on the main audio loop setupFunction
and loopFunction, respectively. These JS expressions are
packed into a JS object which is posted through the proces-
sor Audio WorkletNode messaging port (Listing 2).

Listing 2: Code injection into the AWP scope

this.audioWorkletNode.port.postMessage ({
eval: 1,
setup: userInterpretedFunction.setup,
loop: userInterpretedFunction.loop

b

Once the message containing a payload of serialised DSP
JS resolves asynchronously in AWP scope, the code is eval-
uated just-in-time (JIT) using the eval() function. The
user-evaluated expression that was converted to a JS DSP
specification with Maximilian objects is compiled and set
ready to run in the AWP loop (Listing 3).

Listing 3: Dynamic code evaluation in the AWP scope

this.port.onmessage = event => {
if ("eval" in event.data) {
try {

let setupFunction =

eval (event.data["setup"]);
let loopFunction =

eval (event.date["loop"]);

} catch (err) {

For instance, considering the following expression for FM
synthesis (Listing 4), that is valid for of a live coding lan-
guage that a user has defined through a given grammar:

Listing 4: Example of a test user-evaluated DSP expression
osc sin(osc sin 100 + osc tri 40)

The system interprets this expression and generates two
anonymous functions. The setupFunction (Listing 5) de-

clares and instantiates the required Maximilian Wasm ob-
jects for the custom DSP expression in the AWP scope.

Listing 5: The setupFunction generated from the AST

O =>A{
let q=I[];
q.0sc13 = new Module.maxiOsc();
q.oscl4 = new Module.maxiOsc();
q.o0scl5 = new Module.maxiOsc();
return q;

}

The original user-expression is converted to a compiled
JS function, the loopFunction (Listing 6), which composes
the Maximilian objects previously declared in setup Function
and runs in the AWP process loop (the main audio loop).
The audio engine crossfades between the previous loop Func-
tion and the newly generated one.

Listing 6: The loopFunction generated from the AST
(q@) => {

return q.oscl3.sinewave ((
q.oscl4.sinewave (100)
+ q.osclb5.triangle (40))
)
}

http://dsp.audio/editor
https://acarabott.github.io/audio-worklet-live-coding
http://bit.ly/2F4vZKM

103 Code generation time
Parse time
© eval() time

0 100 200 300 400 500 600
Number of sine oscillators (previous test)

Figure 2: Load testing results

4. PERFORMANCE AND RELIABILITY
EVALUATION

Good performance and reliability are central measures of
the success of a live coding system, which must be able to
meet the demands of live musical performance. We mea-
sured the reliability, latency and signal processing capacity
of our system. To achieve this, we designed a simple test-
ing language that was capable of creating nested trees of
oscillators. An algorithm was designed to probabilistically
generate code for oscillator trees with variable width and
depth. An example of generated code is shown below.

osc sin (osc sin 960 + osc sin 961 + osc
sin (osc sin 657 + osc sin 348 + osc
sin 405) + osc sin (osc sin 1050 + osc
sin 122 + osc sin (osc sin 1052 + osc
sin 1090 + osc sin (osc sin 1088 +
osc sin (osc sin 258) + osc sin (osc
sin (osc sin 820))) + osc sin 221)))

This code generator could be hand tuned to change the
probable size of its output. The test procedure worked as
follows: (1) generate some code, (2) record the number of
oscillator objects in the code, (3) run the code in the audio
engine, recording times for parsing, JS code generation from
the parse tree, and for compiling the code using eval(), (4)
wait for 200ms and repeat.

All tests run in Chrome 75.0, on a MacBook Pro mid-2015,
with 16Gb RAM and a 2.5GHz i7 CPU. We recorded time
using window.performance.now(), with sub-millisecond res-
olution. These results figures measure the capacity of a sin-
gle audio worklet, rather than the capacity of the browser’s
JS virtual machine, which is capable of running multiple
audio worklets.

4.1 Signal Processing Capacity

Our first investigation tested the signal processing limits
of the system, in a test designed to mimic real-world sce-
narios. The code generator was configured to create code
that might overload the AWP signal processing loop. When
overloading happens, this has an effect on the eval() time of
the subsequent test, because the eval () command is carried
out in the AWP thread and slows down if it is overloaded.
We ran the test for one hour, over 14000 iterations. Figure
[shows a scatter plot comparing the number of sine wave
oscillators running in the previous test compared to the time
taken for eval () to run in the current test. The eval() time
is stable until around 200 oscillators, when variance starts
to increase, and then above 250 oscillators we start to see
an increase in latency. Parsing and code generation times
remain stable throughout, as they are unaffected, running

N
o

[Parse time
Code generation time
eval() time

=)
w (=]

time (ms)
s

200 250

100 150
Number of sine oscillators

Figure 3: Latency test results: individual processes

total time (ms)

0 50 100 150 200 250
Number of sine oscillators

Figure 4: Latency test results: combined processes

in a separate worker thread. From these results, we can
estimate that the system will run with good stability with
approximately 200-250 sine wave oscillators.

4.2 Reliability and Latency

We tested the latency of the system within the stable lim-
its discovered in the previous test. This is the time between
when a user evaluates a line of code, and when the compiled
code is ready to run in the next DSP cycle. The test ran for
ten hours and 11 minutes, with 173422 iterations. Extreme
outliers (with z-score over 20) were removed, accounting for
0.007% of datapoints. The remaining 99.993% of tests show
latency of <25ms, indicating high reliability. Figure[3shows
individual latencies compared to the number of sine wave
oscillators in the test code. The largest and most variable
cause of latency is the Nearley parser. The combined la-
tency times (Figure@ demonstrate that the system is likely
to run with sub-perceptual (<20ms) latencies when running
within stable limits. The blue lines in both figures show a
linear regression fit.

S. DISCUSSION AND DESIGN PATTERNS

The JS community often considers the use of the eval
() function a bad coding practice [4]. However, it has
been used in the Webkit console, JSBin, and the widely
adopted library lodas@ The problems of using eval()
have been associated with malicious attacks through code
injection and cross-site scripting, hard maintenance and de-
bugging, slow performance due to the cost of compilation,
and wastefulness of resources (e.g. creating execution con-
text collecting garbage, exporting variables). While we are

!5 Angus Croll: Break all the rules, JSConf 2012, |https://
youtu.be/MFtijdklZDo

https://youtu.be/MFtijdklZDo
https://youtu.be/MFtijdklZDo

still exploring this solution within the constraints of our sce-
nario—e.g. client-side, immediate execution in the AWP
scope—our evaluation metrics suggest that the advantages
of eval() supersede the potential problems. One problem
that we found with using eval () and Wasm was in the heap
memory expansion. Although Emscripten provides an AL-
LOW_MEMORY_GROWTH compilation option, we found
it led to inconsistent behaviours. We resolved this issue by
setting a maximum memory growth threshold.

In the exploration and gradual development of our solu-
tion, we dealt with difficulties arising from the integration
of technologies with different degrees of maturity. Some
difficulties inherent to Audio Worklet were, for instance, er-
ror messaging, the availability of APIs in the AWP scope,
and its impact in the Wasm module loading (e.g. for stan-
dard modularisation and module naming). Other difficulties
emerged from loading these components within a webpack
development environment which revealed somewhat cum-
bersome (e.g. adding imports for emitting Wasm without
compilation, server MIME type definitions).

Our solution can provide a design pattern for people inter-
ested in re-using our stack or developing a similar approach.
The first use of the signal engine was in a live coding per-
formance at AlgoMech 201 The signal engine integrated
with the live coding artist’s web page and supported its use
as the main live coding instrument. Live coding was per-
formed directly in Chrome Dev tools console.

6. CONCLUSION AND FUTURE WORK

We present a high-performance implementation of a sig-
nal engine for a new Web-based system for the live coding
community. Evaluation shows that the system runs with ef-
ficiency and high reliability for 200-250 oscillators with sub-
perceptual latency. Future work will focus on the presenta-
tion layer, user language specification support, and further
development of the ML and MML workers. These devel-
opments include moving to an optimised parser implemen-
tation with WebAssembly JIT compilation, and supporting
Shared ArrayBuffer for inter-thread communication.

7. ACKNOWLEDGMENTS

This work was supported by the AHRC-funded MIMIC
project, ref: AH/R002657/1 (https://gtr.ukri.org/projects?
ref=AT/R002657/1).

8. REFERENCES

[1] F. Bernardo, M. Grierson, and R. Fiebrink.
User-Centred Design Actions for Lightweight
Evaluation of an Interactive Machine Learning
Toolkit. Journal of Science and Technology of the
Arts, 10(2):2, 2018.

[2] F. Bernardo, M. Zbyszynski, R. Fiebrink, and
M. Grierson. Interactive Machine Learning for
End-User Innovation. In Proc. of the Association for
Advancement of Artificial Intelligence Symposium
Series: Designing the User Ezperience of Machine
Learning Systems, pages 369-375, 2017.

[3] H. Choi. AudioWorklet: The future of web audio. In
Web Audio Conference, 2018.

16 Algo/Mesh, |https://algomech.com/2019 /events/mesh/

[4] D. Crockford. JavaScript: The Good Parts. O’Reilly
Media, first edit edition, 2008.

[5] J. Earley. An efficient context-free parsing algorithm.
Communications of the ACM, 13(2):94-102, 1970.

[6] M. Grierson and C. Kiefer. Maximilian: An Easy to
Use, Cross Platform C++4 Toolkit for Interactive
Audio and Synthesis Applications. In Proc. of The
International Computer Music Conference, number
August, pages 276-279, 2011.

[7] M. Grierson, M. Yee-king, L. McCallum, C. Kiefer,
and M. Zbyszynski. Contemporary Machine Learning
for Audio and Music Generation on the Web: Current
Challenges and Potential Solutions. ICMC, 2018.

[8] C. Kiefer and T. Magnusson. Live Coding Machine
Learning and Machine Listening: A Survey on the
Design of Languages and Environments for Live
Coding. In Proc. of the International Conference on
Live Coding., Madrid, 2019.

[9] V. Lazzarini, E. Costello, and S. Yi. Csound on the
web. In Linux Audio Developers Conference, 2014.

[10] S. Letz, S. Denoux, Y. Orlarey, and D. Fober. Faust
audio DSP language in the Web. Linuz Audio
Conference, pages 29-36, 2015.

[11] T. Magnusson. Herding Cats: Observing Live Coding
in the Wild. Computer Music Journal, 38(1):91-101,
2014.

[12] Y. Mann. Interactive Music with Tone.js. Proc. of the
1st annual Web Audio Conference, 2015.

[13] A. Roberts, C. Hawthorne, and I. Simon. Magenta.js:
A JavaScript API for Augmenting Creativity with
Deep Learning. In Proc. of the 35th International
Conference on Machine Learning, pages 2—4, 2018.

[14] C. Roberts. Metaprogramming Strategies for
AudioWorklets. In Web Audio Conference, 2018.

[15] D. Shiffman, J. Ashe, K. Compton, H. Davis,
D. Kazemi, G. Kogan, K. McDonald, and Yining Shi.
ml5: Friendly Open Source Machine Learning Library
for the Web. ADJACENT, (3), 2018.

[16] D. Smilkov, N. Thorat, Y. Assogba, A. Yuan,
N. Kreeger, P. Yu, K. Zhang, S. Cai, E. Nielsen,
D. Soergel, S. Bileschi, M. Terry, C. Nicholson, S. N.
Gupta, S. Sirajuddin, D. Sculley, R. Monga,
G. Corrado, F. B. Viégas, and M. Wattenberg.
TensorFlow.js: Machine Learning for the Web and
Beyond. In Proc. of the 2nd SysML Conference, 2019.

[17] K. Steiglitz. A Digital Signal Processing Primer: With
Applications to Digital Audio and Computer Music.
Addison-Wesley, 1996.

[18] W3C Audio Working Group. Web Audio APIL
https://webaudio.github.io/web-audio-api, 2019.

[19] G. Wakefield and C. Roberts. A Virtual Machine for
Live Coding Language Design. Proc. of New Interfaces
for Musical Expression 2017, pages 275-278, 2017.

[20] G. Wang, P. R. Cook, and S. Salazar. ChucK: A
Strongly Timed Computer Music Language. Computer
Music Journal, 39(4):91-101, 2015.

[21] A. Zakai. Emscripten: An LLVM-to-JavaScript
Compiler. In Proc. of the ACM international
conference companion on Object-Oriented
Programming, Systems, Languages, and Applications.
ACM, 2011.

https://gtr.ukri.org/projects?ref=AH/R002657/1
https://gtr.ukri.org/projects?ref=AH/R002657/1
https://algomech.com/2019/events/mesh/
https://webaudio.github.io/web-audio-api

	Introduction
	Integrated architecture of signal synthesis and machine learning, for a web-based live coding ecosystem
	Design requirements for a live coding system's signal engine
	ML and MML workers
	Live code and grammar editors
	Language processor and intermediate language

	Design strategy: Refactoring Maximilian for Audio Worklet
	WebAssembly generation with Emscripten
	Audio worklet code injection
	Parsing, evaluation and execution of user-defined code

	Performance and Reliability Evaluation
	Signal Processing Capacity
	Reliability and Latency

	Discussion and Design Patterns
	Conclusion and Future Work
	Acknowledgments
	References

