
Interference: Adapting Player-Music Interaction
in Games to a Live Performance Context

Matthew Wang
Princeton University
Princeton, NJ 08544

mjw7@princeton.edu

ABSTRACT
Interference is a multiplayer music game and generative music
system, which is implemented as a Javascript web application and
designed for live performance. It is based on the potential for
dynamic music generation that exists in video games through
player-music interaction. It uses a competitive multiplayer form to
sustain a feedback loop in which players construct and change the
music at a fine scale, while the music in turn informs players of the
game state, affecting how they continue to play and therefore
change the music. The design of Interference must also manage
conflicts between games and music as contrasting media, such as
presentation, length, and complexity, in order to create both a game
that is engaging for its players and a musical performance that is
compelling to its audience. Towards this objective, it combines
elements of games that do not traditionally exist in music, such as
an explicit goal-oriented structure, with features that serve strictly
musical, performative purposes, allowing players to act
simultaneously as performers. To support this design, it utilizes
several existing web technologies to achieve tight synchronization,
changeable sound synthesis, and networked interaction between
players.

1. INTRODUCTION
A crucial consideration in the development of video games and
especially in the creation of their music is how players interact with
the music and sound of games. Due to the inherently dynamic
nature of games, their music must be changeable based on how
players can progress through them. For most games, this means that
music starts in response to a trigger – possibly on startup, entering
a new area, or encountering a certain character – and continue for
its set length or indefinitely until another trigger. The player, having
control over each trigger either directly or indirectly, therefore
controls the music. Inversely, the music of games influences how
players act. It can inform the player of a change in the state of the
game, prompting them to react, or exert some emotional effect on
the player, affecting their decisions or perceptions going forward.

This combination of player influence on the progression of music
and musical influence on the actions of players results in a feedback
system. Player action determines the progression of the music,
which affects further player action in turn. But for a majority of

games, the music-making potential of this feedback system goes
unrealized. This is largely unsurprising in games that do not place
significant focus on music as a game element. In these games, non-
musical goals are the primary concern and more complex player-
music interaction, if implemented, would likely obscure those
goals. However, even most music-oriented games make little use
of this feedback system. Take for example the archetypal “music
game” Guitar Hero [2]. Although it presents as a music-making
game, in which the player acts as a performer, the player actually
has very limited control over the music. They are only able to play
or not play predetermined notes – controlling the playback of
music, but not its content. Michael Liebe describes this form of
music, which is typical of music games, as proactive music, which
mostly occurs independently of player input and demands some
response from the player, as opposed to reactive music, which
reacts directly to player action, and linear music, which occurs
independently of direct player input and does not demand a
response [5].

With Interference, I aim to create a game and performable
generative music system that takes advantage of player-music
feedback and features music that is simultaneously proactive and
reactive. From a design standpoint, this requires an understanding
of approaches to sustaining such a feedback system, methods for
the construction of a compelling game that uses said feedback
system, and any concerns a performance context may introduce.
Following a discussion of these points, I will explain the core
components of the technical implementation of Interference as well
as its gameplay and performance.

2. DESIGN
2.1 Player-Music Feedback
The main obstacle to sustaining a consistent and meaningful
feedback relation between player and music is the inherent
incompatibility of reactive music with proactive music. Reactive
music struggles to influence player action in the same way as
proactive music because players tend to interpret reactive music as
their own action or as a commentary of their action rather than as
an external force that demands reaction. Conversely, if the music
reacts more indirectly to player action such that players feel they
must respond to it, it quickly ceases to feel reactive as players
become be less able to purposefully influence it.

One solution to this problem is to allow the player to directly
generate the music but then introduce a level of abstraction or error
into that generated music that retains its reactive identity while still
demanding a response from the player. An example of this sort of
feedback system is Zero Waste, a game-like musical piece for a

Licensed under a Creative Commons Attribution 4.0 International License (CC BY
4.0). Attribution: owner/author(s).
Web Audio Conference WAC-2019, December 4–6, 2019, Trondheim, Norway.
© 2019 Copyright held by the owner/author(s).

sight-reading pianist and a computer, which has the computer
present the performer with a few measures of random music to
sight-read before transcribing an attempt by the pianist to play it,
and presenting the transcription back again [8]. This system
achieves a form of feedback that could exist in-game, but it relies
on player and system error and trends. As a result, there is a
somewhat deterministic quality to the process, and furthermore,
change tends to occur gradually in such a system.

For this project, I sought to create a more dynamic and variable
system. Therefore, to overcome this obstacle of sustaining a
feedback system, rather than use error to create variation in a
human-computer feedback system, I chose to design Interference
as a multiplayer game. With multiple players, each player can
contribute in a direct and transparent way to the composite
generated music, but each player must also react to the
contributions of every other player. This maintains both reactive
and proactive features in the music.

2.2 Competitive Gameplay
Such a multiplayer game could be implemented as either a
cooperative or competitive system, but I chose to create a
competitive system for several reasons. First, competition, more
automatically than cooperation, engages players and encourages
participation because it introduces conflict and challenge without a
need for high complexity or technicality. Second, concerning use
in a performance context, a competitive system requires only a
minimal level of skill and knowledge in the mechanics of the game
in order for a performance to progress and, importantly, end.

Last, the combination of proactive and reactive musical elements in
a multiplayer environment quickly becomes chaotic and complex.
This complicates the implementation and balance of cooperative
tasks, which require a non-player system to challenge but not
overwhelm players, whereas a competitive system is largely self-
balancing even in a highly complex environment. Regardless of the
complexity of the system, each player starts with equal means and
information and is only rewarded or limited by their own ability to
use their resources in comparison to their competitors. In this way,
while a player could choose to ignore proactive musical
information, they would put themselves at a disadvantage to more
reactive players.

2.3 Performance Context
In contrast to the competitive nature of Interference is its design as
a performance work. While the players compete, they must also
cooperate as performers and therefore may sometimes choose to
take performative actions rather than actions that are competitively
advantageous. Therefore, a design goal was to have performance
and competitive motivations overlap as much as possible, such that
actions which are advantageous in the game are also musically
engaging.

An important consideration towards achieving this goal is how
player action maps to sound. Ideally, game-motivated player action
should correspond to musically functional sound. To the
determination of strong mappings as such, attention to the time
scale of game events is especially important. With some
exceptions, game events that occur only occasionally best map to
more significant changes and large-scale shifts in the music while
changes that occur frequently map well to more subtle changes in
the music. In particular, if the musical result of an action that occurs
frequently in the game is too extreme, it can create conflict between
the player and the performer roles. Karen Collins’ “Ten
Approaches to Variability in Game Music” from Game Sound is a

particularly useful resource in the consideration of which elements
of music in games can be effectively dynamically altered, although
the actual mapping of game events to these elements is largely a
matter of experimentation [1].

Interference specifically achieves some harmony between the roles
of player and performer in that large modal shifts in the game
correspond to paradigmatic changes in the musical texture while
the most frequent game events change the music only
incrementally. And perhaps most successfully, one of the strongest
tactics – a technique I call “leading the sequencer step,” discussed
in Section 4 – results in appropriately striking yet simple musical
figures. That said, Interference is somewhat lacking in the range of
performative expression it gives its players due to its limited use of
variable sound synthesis and the relatively small amount of
influence a single performer has over the composite music.
A final performance concern, aside from the harmonization of
player and performer roles, is the practical execution of these roles,
which are challenging for a single person to focus on
simultaneously. Interference uses its visuals to enable its players to
execute both roles. By corresponding to both game action and
musical change as closely as possible, visual elements help link the
game and music. Visual elements that simultaneously represent a
game object and appear to produce sound allow players to act
deliberately as performers. Additionally, these visuals can enhance
the experience of the audience, which led to the choice in
performance to display players’ screens on external monitors facing
the audience (see Figure 1).

Figure 1. Setup of a five-player performance.

3. IMPLEMENTATION
3.1 Networked Game Interaction
Crucially, Interference is a networked game, as information about
game and player states must be shared across all players. For
networking game information and input between players, I used
Lance, a Node.js based server and client-side library intended for
multiplayer web-based games [7]. It additionally includes basic
game and physics engines and synchronization strategies to handle
latency. Lance does not provide for the more flexible sound
synthesis or the precise rhythmic synchronization Interference
requires but is extremely useful for essentially all other aspects of
the project, and additional modules and libraries are easily
incorporated.

3.2 Synchronization
Due to both the musical focus of this project and the presence of
input latency in a networked game context, which exacerbates any
synchronization issues for performers, implementing precise and
reliable rhythmic synchronization was especially important. For
this synchronization, I used Collective Soundworks’ sync, which
provides consistent synchronization with the minor condition that
players may need to wait some time for their sequencers to
synchronize upon connection [3, 4].

3.3 Sound Synthesis
Finally, effectively controlling the music of Interference requires
flexible sound synthesis. Adequately flexible sound synthesis in a
game context allows for virtually any mapping of game variables
to sound. For this purpose, I ultimately chose to use Tone.js, an
audio framework built on the Web Audio API [6]. Tone.js has some
notable limitations, such as a lack of polyphony on noise-based
instruments, but as a relatively mature and widely used web audio
framework, its ease of use was worth any of its inflexibilities.

4. GAMEPLAY
To balance the complex fine-scale variation of the musical and
visual elements of Interference, the game itself is relatively simple
if rather abstract. The game space consists of a series of 32 by 18
colored grids positioned in a horizontal line. Each grid represents
one player’s territory, their initial field of view, and a set of three
step-sequencers layered on top of each other (see Figure 2). Each
of these three step-sequencers runs constantly at differing rates
from one another. The horizontal axis represents the sequencer time
steps and the vertical axis represents the pitch of sequenced notes.
Each player begins as one of five color palettes, which correspond
to various harmonic sets for the sequencer pitches. Each player’s
goal is to convert every other player to their palette.

Figure 2. The view of a single player’s grid during a build phase
with a diamond-shaped ball in black, notes of each shape, and
playheads for each sequencer. The black triangles at the bottom
of the grid indicate how many notes the player has left to place.
With the exception of an outro section, the game consists of two
states that alternate over its course: the “build” phase and the
“fight” phase. See Figure 3 below, which provides an outline of the
overall game progression structure and the mechanical and musical
characteristics that define each type of phase.

Figure 3. The progression of Interference. The alternation of
build and fight phases creates a cycle between varying levels of
density and stability as the overall harmonic content gradually
converges.
The game begins in a build phase, during which players build
sequences of notes. To start, a ball object spawns with a randomized
position and velocity and moves throughout the space, bouncing off

its boundaries. Players can then “hit” the ball as it passes through
their area to place a note in their sequencer at the position of the
ball. The shape and sound of the placed note depend on the shape
of the ball, which can be a circle, a diamond, or a square. After
players have collectively hit the ball enough times, it breaks. The
player who broke the ball then has the option to start another build
phase or progress the game into a fight phase.

Figure 4. Players' screens during a fight phase with their views
displaced from their starting position.
During a fight phase, players can move their view and placed notes
as a single rigid structure through the entire game space, wrapping
across boundaries (see Figure 4). Players convert cells of the grids
to their color when a sequencer plays their notes on those cells,
resulting in the especially effective tactic of leading each step of a
sequencer playhead, such that a note plays on every step and
converts a line of cells. Players can remove each other’s notes by
forcing collisions with their own notes. A rock-paper-scissors
system using the three note-shapes determines which note to
remove upon collision.

After enough notes have been removed or players have made
enough inputs to force progression, the fight phase ends and the
piece transitions back into a build phase. At this point, players and
notes reset to their original positions and if a player’s territory has
been mostly overtaken by other colors, their entire territory and
their notes convert to the now most prominent color. The game ends
when all players have the same color palette or after some amount
of time chosen beforehand, at which point all players are converted
to the dominant color (see Figure 5).

Figure 5. Progression of a three-player game. (1) First build
phase. Each player has a color. (2) End of the first fight phase.
The red player has converted much of the field. (3) Second
build phase. The light blue player has been fully converted to
red upon the transition from fight phase to build phase. (4) End
of the second fight phase. The red players have converted even
more of the remaining field. (5) Outro phase. The purple player
has been converted to red and the game has ended.

Aside from the basic rules and progression of the game, the
gameplay also intersects with the music in several ways. For
example, because each player’s audio output only sonifies the
immediate contents of their territory, they can use their audio to
identify when another player is converting their territory, assuming
players use spatially separate audio output systems, as with the
Princeton Laptop Orchestra’s hemispherical speakers. Players can
also use the music to identify the state of the game, such as the
current game phase or even the dominant color palette. Players can,
of course, identify these elements visually but not without a
significant time commitment due to the limited scope of visual
information at any given moment, so those who can react
effectively to the music gain an advantage.

5. PERFORMANCE
Interference also features several strictly performative features,
which generally cater to musical elements that were otherwise
difficult to incorporate into the game. The outro section mentioned
previously is one such case as it begins only once the actual game
has ended. During the outro section, all players have the same color
palette and can move freely as in a fight phase, but instead of
removing each other’s notes, players can input a command to
remove a random note from the whole game. The purpose of the
outro section is strictly musical in that it allows the performers to
play freely in the harmonic progression of the final color palette
and slowly time a fade-out by removal of notes to circumvent an
otherwise musically abrupt ending to the game. Another
performative feature is a control to progress the harmony, which
during a fight phase also controls progression back into a build
phase, but otherwise strictly serves a musical purpose.

6. CONCLUSION
Interference explores a form of feedback-based music generation
that game environments provide but that often goes unused due to
limitations games typically impose on their music. Rarely do games
allow music to make heavy demands of players and when they do,
as in music and rhythm games, the player generally has little control
over the generation of the music. By creating a multiplayer system
in which players interfere and intermingle with one another’s
musical and game choices, Interference allows its players to
generate its music while simultaneously allowing the music to
make demands of its players.
The concepts behind this project open up many opportunities for
future development. While Interference features a high level of
fine-scale variability and no large precomposed parts, which are
more typical in games, these ideas could potentially apply to any
scale of musical content. Additionally, many features of
Interference, such as the visuals, exist mostly to make the game
more accessible to players and audiences and are not necessary to
the core concept of the game. A strictly audio-based game could be
possible (though much more difficult to play), and as previously
discussed, a cooperative game could operate under similar
principles through careful design. The generative possibilities of

multiplayer music games are largely unexplored, and Interference
is only a basic proof of their potential.

7. LINKS
Interference is playable at https://interference.herokuapp.com/.
Server limitations may affect game performance.

Source code and a brief description of controls is available at
https://github.com/mattmora/interference.

Video and audio recordings of the premiere performance of
Interference by the Princeton Laptop Orchestra is available at
https://www.youtube.com/watch?v=C-5P3hXuGfs.

8. ACKNOWLEDGMENTS
Thanks to Jeff Snyder for advising the development of this project,
to the Princeton Laptop Orchestra for their assistance in testing,
rehearsing, and performing it, and to my friends in the Princeton
Pianists Ensemble for taking part in a second performance.

9. REFERENCES
[1] Collins, K. 2008. Game Sound: An Introduction to the

History, Theory, and Practice of Video Game Music and
Sound Design. MIT Press, Cambridge, MA and London.

[2] Harmonix. 2005. Guitar Hero. Game [PlayStation 2].
RedOctane, Mountain View, California, USA.

[3] Lambert, J.P. sync. Github Repository. Retrieved from
https://github.com/collective-soundworks/sync, last checked
11 March 2019.

[4] Lambert, J.P., Robaszkiewicz S., and Schnell, N. 2016.
Synchronisation for Distributed Audio Rendering over
Heterogeneous Devices, in HTML5. In Proceedings of the
Web Audio Conference (WAC). Atlanta, USA. pp 6–11.
URI= http://hdl.handle.net/1853/54598.

[5] Liebe, M. 2013. Interactivity and Music in Computer Games.
In Music and Game: Perspectives on a Popular Alliance, by
Peter Moormann. Springer VS, Berlin. pp 41-62.

[6] Mann, Y. Tone.js. Github Repository. Retrieved from
https://github.com/Tonejs/Tone.js, last checked 11 March
2019.

[7] Weiss, G. Lance. Github Repository. Retrieved from
https://github.com/lance-gg/lance, last checked 9 March
2019.

[8] Whyte, D., Didkovsky, N., and Hutzler S. 2018. Zero Waste:
Mapping the Evolution of the Iterative Sight-Reading of a
Piano Score. Music Theory Spectrum vol. 40, 2, pp 302–313.
DOI= https://doi.org/10.1093/mts/mty019.

