
Towards Large-Scale Artistic Practice with Web
Technologies

Luis Arandas
Faculdade de Engenharia e

Universidade do Porto
Braga Media Arts

luis.arandas@gmail.com

José Alberto Gomes
Portuguese Catholic University

CITAR School of Arts
Braga Media Arts

jagomes@porto.ucp.pt

Rui Penha
Escola Superior de Música e

Artes do Espectáculo
INESC-TEC Porto

ruipenha@esmae.ipp.pt

ABSTRACT
In this article, we present a software architecture that ex-
plores the technological potential of the web as a pro-
grammable interface and as an interpersonal connection
point in the artistic practice. This structure exposes the re-
cently proposed Akson audio-visual (AV) environment, also
raising a technical evaluation of the technologies and design
used to allow the development of both the platform and the
network.

1. INTRODUCTION
The main objective of this article is to expose in detail

the architecture of a web-based AV environment for artis-
tic collaboration. We propose a centralized way to explore
different modes of networked interaction that can be used
in distributed artistic practice. This practice is fundamen-
tally focused on computer music and contemporary media
art through digital interfaces and is designed to explore the
cloud as a medium for communication. This environment
provides the artist with various forms of expression in a
pre-established network, explores the constraints that exist
within it and applies them to digital artistic performance.

The proposed system is programmed to use the capabili-
ties of a Chromium browser. It is allocated on the Heroku1

[20] infrastructure and uses node.js2 [26], a JavaScript (JS)
runtime built on Chrome’s V8 JS engine [15]. We estab-
lish two-way communication structures using the library
socket.io3 [19, 34], generate audio signals using the WebAu-
dio API4 [5] and graphics with the WebGL API5 [13]. All
the connected devices are linked by default, and it is possible
to dynamically change between the implemented modes of
interaction (see section 6). To interact with the system the
user can click on the generated graphics or use the integrated
WebMIDI platform.

1Heroku https://www.heroku.com/
2Node.js https://nodejs.org/en/
3Socket.IO library website https://socket.io
4WebAudio API https://www.w3.org/TR/webaudio/
5WebGL API https://www.khronos.org/webgl/

Licensed under a Creative Commons Attribution 4.0 International License (CC BY
4.0). Attribution: owner/author(s).

Web Audio Conference WAC-2019, December 4–6, 2019, Trondheim, Norway.

c© 2019 Copyright held by the owner/author(s).

All software and interface design was developed specifi-
cally for this research and in the context of Braga Media
Arts6. This outcome is also product of a review into collab-
orative interfaces [4] for AV systems and networked interac-
tion [23, 29].

2. THE SYSTEM
Nowadays, the cloud offers enormous potential as an artis-

tic production space [1, 30]. We reflect not only on the
freedom offered by the web as an extension of the human
gesture, but also as a multimodal shared musical and visual
space.

In this project7 we contract some issues related to hu-
man embodiment and communication efficiency [18, 23] that
are present in the development of communication systems.
Some of those problems are addressed by much contempo-
rary research in this area and one example of that is the
Distributed Immersive Performance (DIP) project [9, 33,
38] working on latency issues for data streaming. We ad-
dress this issue by adopting some techniques often found in
the live-coding [25] practice. We base the system on socket
communications with multiple events throughout the code,
and use them to control the generators on each instance of
the system. In this way small pieces of information are sent
quickly, using the server as a mediator.

But this is just one of the multiple problems addressed.
Other example might be the type of system (i.e., central-
ized; decentralized) and the necessary characteristics (i.e.
dependencies of external libraries; hardware). In the par-
ticular case of this investigation we establish a single static
server to provide the files, include all dependencies in the
source code and instantiate all generators/connections in a
predefined way.

When a successful link is established to a device capa-
ble of reproducing the platform (i.e. WebGL 2.0 [12]) and
having included all dependencies and modules without the
need for external links, the platform is structured. These
include NPM8 and the Express9 [22] project, both used as
frameworks for node. Regarding node modules, the source
code includes: portfinder10 - a port scanner on the current
machine; osc-js11 package - to use the Open Sound Control

6http://www.bragamediaarts.com/pt/
7https://github.com/luisArandas/akson
8NPM https://www.npmjs.com/
9Express https://expressjs.com/

10portfinder https://www.npmjs.com/package/portfinder
11osc-js https://www.npmjs.com/package/osc-js

[37] (OSC) protocol and to establish UDP connections with
software like Pure-Data [27] or SuperCollider [35]; and the
winston12 package - a universal logging library that can help
deal with runtime problems.

Before starting to build the interface [7], at the same time
that the generators and controllers are instantiated, a model
of communication between users is established. The es-
tablished (bidirectional) sockets are defined throughout the
project, accompanied by unique ID’s, which in turn cor-
respond to functions on the front end. By default, the
socket.broadcast.emit method is set to send to all connected
machines except the sending agent.

This homogeneous connection topology will later serve as
a means of defining modes of interaction. Applying patterns
and/or condition matrices to the code that is running on
the devices, is an approach that allows for a slight and rapid
state change on the various bindings. It is then possible
to define communication structures in the created network,
which can objectively control the scope of the user’s action.
How the data navigates the network is represented in figure
1 as a diagram.

Figure 1: Communication structure between two
machines connected to the server. The presented
diagram shows that no data emission is performed
without first passing through the established inter-
action matrix and the server.

3. THE INTERFACE
After establishing the connections, the type of server and

the dependencies we can start thinking about the develop-
ment of an interface as a mediator of the experience [32]. Of
course, there are several options to be taken when it comes
to developing interfaces (graphical or not), and we have de-
cided to expose its existence by encapsulating the technical
conditions of this system. Respecting the characteristics of
this project as an AV environment we decided to develop
two types of layers. A graphical user interface (GUI) com-
posed by widgets, sliders and panels and also a structure
that allows interacting directly in the graphical scene (see
section 4/5).

This includes some JS dependencies such as: jQuery13 -
for the use of its functions for document processing; The
NexusUI14 project [2] - an open-source collection of HTML5
interfaces and JS helper functions to assist with building web
audio instruments in the browser; the WUI15 project - an
easy to use and lightweight collection of widgets for the web
browser using vanilla JS with no dependencies; And some
adapted buttons from the Bootstrap16 collection. A respon-
sive and popular component library for quick prototyping.

12winston https://www.npmjs.com/package/winston
13jQuery https://jquery.com
14Nexus http://nexus-js.github.io/ui/
15WUI https://github.com/grz0zrg/wui
16Bootstrap https://getbootstrap.com

We have also included a way to communicate with exter-
nal peripherals via the MIDI protocol. We have developed
a platform for data reception and processing using Web-
MIDI API17 [5] instances and a system for data emission via
OSC protocol. As a web protocol that allows controllers and
general electronics to communicate and synchronize through
MIDI, there are some libraries that present dynamic learning
systems, often found in digital audio workstations (DAW).
The SimpleMidiInput.js18 library does an abstraction over
the input navigator.requestMIDIAccess and we integrated it
alongside WebMidi.js19, for data processing.

4. AUDIO ENGINE
As previously mentioned, we built the system by offering

communications with small portions of information, some-
what similar to the a.bel system [10] (i.e., method properties,
or interface changes). This is a structure that was thought
to be able to control large numbers of distributed interfaces
without the need of an enormous computational power also
inferred by latency.

Together with native WebAudio, we also explore the
tone.js20 [21] library. It has a set of abstractions that allow
the creation of generation instances, scheduling and the use
of processing effects. We have linked the Nexus widgets with
various methods of audio generators by assigning the corre-
sponding IDs to back-end sockets, also with an instance of
the MediaStream Recording API for direct registration on
each connected instance, making it easy to document the
collective performance.

By default, the way to make music is by playing notes
using the graphics system. By interacting with the objects
on the page, notes are generated within a scale. In order to
facilitate the gestures between instances, several scales have
been created, encompassing three octaves. These scales can
be found in the class entitled ScalesPlaying.

var s ca l eMatr ix = new Sca l eP lay ing () ;
var s c a l e = sca l eMatr ix . cMajorPentatonic () ;
var note = Math . f l o o r (Math . random () ∗
s c a l e . l ength) ;
Tone . context . resume () . then (() => {
cu r r e n tS y nth e s i z e r . t r i gge rAt tackRe l ea s e (

s c a l e [note] , ”4n ”) ; }) ;

This piece of code provides a way to instantiate the class
and play a note within it. The Math object is used to per-
form a random operation within the array and is called a
generator method. By default, all instances start in major
pentatonic, and all class scales are arranged in C to facilitate
phrase coordination between devices.

The group of scales that we can choose from is composed
of: cMajorPentatonic(); cMinorPentatonic(); cMajor();
cMinor(); cHarmonicMinor(); cMelodicMinor(); cAdon-
aiMalakh(); cHungarianMajor(); cHirajoshiJapan(); cIo-
nian() and cLocrian(). The way this is implemented is sim-
ply based on a dynamic way of writing to the currently used
array. In the following example we instantiate a list return.

17WebMIDI https://webaudio.github.io/web-midi-api/
18SimpleMidiInput.js
https://github.com/kchapelier/SimpleMidiInput.js

19WebMidi.js https://github.com/djipco/webmidi
20Tone.js https://tonejs.github.io

cHarmonicMinor () {
re turn [’ C2 ’ , ’D2 ’ , ’D#2 ’ , ’F2 ’ , ’G2’ ,

’G#2 ’ , ’B2 ’ , ’C3 ’ , ’D3 ’ , ’D#3 ’ , ’F3
’ , ’G3’ , ’G#3 ’ , ’B3 ’ , ’C4 ’ , ’D4 ’ , ’
D#4 ’ , ’F4 ’ , ’G4’ , ’G#4 ’ , ’B4 ’ , ’C5
’ , ’D5 ’ , ’D#5 ’ , ’F5 ’ , ’G5’ , ’G#5 ’ ,
’B5 ’] ;

}

As described above, these notes are called randomly
within the scale. The software has no structure to help for-
malize musical structures (i.e., stochastic modelling or any
other probability theory implementation [28]), often making
randomness a problem. The way to choose notes by hand
in a graphical interface is sometimes not enough when you
want to create precise coordination between distant players.
A popular and easy to implement example multiple times
found in automatic music systems are the Markov chains.
The js-markov21 package is a recent example of that mathe-
matical implementation, and also the foswig.js22 library that
works with text can be used for symbolic content generation.

5. GRAPHICS ENGINE
The graphic system is conceptually built with some sim-

ilarities to the previous one, using WebGL. It also explores
the generation of graphics in fixed or mobile devices using
the browser, exchanging small amounts of information such
as mouse clicks when interacting with the generated content.

It uses the three.js23 [14] library and its custom render-
ing system alongside GLSL [31] shaders for post-production.
We use it to pose the methods and characteristics of the ren-
derer, instantiate the geometries and define the raycaster
which is the main algorithm used for graphical interaction
(instantaneously used by synthesizer).

This system is constructed to seek a synesthetic coherence
between the graphical interaction and the sound generation,
from the moment the artist’s action occurs [8, 11]. It is
possible to explore some kind of feedback between devices
when they are interacting, such as color change, which is
a result of a successful click. User geometries and actions
are also assigned to individual IDs that will be matched on
the server. The graphical interface is also populated by the
visual system related methods such as camera movements,
light control and instantiated geometry attributes.

6. INTERACTION MODELS
As a system focused on large-scale artistic practice,

whether defined by a large number of interfaces or by large
distances around the world, it is meant to explore the dy-
namic change of data flows in the same network.

Referencing the study area of human-computer interaction
[16, 17, 24, 36] (HCI) on the development of digital collabo-
rative interfaces, there are several options that can be taken
regarding the interaction models offered to users. With the
proposed architecture we can send user data (i.e. browser
attributes), sound data (i.e. generator attributes; filters),
graphics data (i.e. geometry properties; color changes) and
system info (i.e. the machine being used; the position in

21js-markov https://www.npmjs.com/package/js-markov
22forwig.js https://github.com/mrsharpoblunto/foswig.js
23Three.js https://threejs.org/

space). All these atributes are set up in matrices and ar-
ranged in such a way that they can be easily manipulated.

The connection matrix will be a validation of conditions
before the sockets are transmitted anywhere else, thus allow-
ing for its dynamic change. We then establish relationships
between instances [36].

Several network topologies existing in the history of con-
temporary artistic performance can be implemented, always
maintaining a causal relationship between the type of net-
work and the artist’s freedom.

Figure 2: Data flow between browsers used to es-
tablish interaction models within the network.

7. SCALABILITY
Collaborative systems used for AV purposes in the cloud

tend to require special development when all connected in-
stances have complete freedom of action. Even if the system
can (i.e. in terms of computing power) withstand hundreds
or even thousands of interfaces (with or without human
agents), it is necessary to create dedicated sub-systems when
it comes to action management. That number of artists
connected at the same time in a singe performance can be
interesting as an artistic phenomenon, but it can also be a
problem in many ways.

Assuming that the infrastructure is set (i.e. Heroku; Ama-
zon AWS24; Microsoft Azure25) and using the architecture
presented throughout this article, a dynamic count of users
and their automatic grouping can be a good starting point.

It is possible to solve some of the problems raised by pro-
gramming a unified group, internally separated by the vari-
ous modes of interaction (in sub-groups) maintaining a con-
stant count of entries on the server (log-ins). Offering the
possibility to change model to each user (including being
alone), with each x number of entries in the system we can
dynamically create copies of that group and allocate users
there as needed (or if chosen by them). Respecting the rules
of communication present in each model, we can also intro-
duce a dedicated console in the front-end showing all these
updates in real time, so that it is possible to orchestrate ges-
tures between people and have several performances taking
place at the same time separately.

Still, multiplying the various instances automatically by
keeping the previously presented rules does not solve inter-
action freedom. Having a transmutable system can help
in optimizing the environment but it is necessary to stress
that the various interaction models are finite. There may

24Amazon AWS https://aws.amazon.com
25Microsoft Azure azure.microsoft.com

be some kind of collaborative behaviour model that doesn’t
exist, which can lead to an easy-to-use preset and back-end
control system. By providing this solution, we can have
some degree of control when large numbers of people want
to use the system from the same domain but do not want to
interact with each other.

A public experiment already conducted with the proposed
environment took place at the xCoAx international confer-
ence (Figure 3) [3]. The stage was occupied by two perform-
ers, creating an instance of the proposed system. At the
beginning of the concert, it was explained to the audience
how they could participate/interact, and that this would be
done in a dedicated network.

The agents on stage composed the piece exploring the un-
controlled interaction of the participants for half the dura-
tion of the concert, defining what all the connected users
could play. In this way the AV content was modeled, with-
out the external participants being able to divert the purpose
of this event.

Figure 3: Public performance in the International
Conference on Computation, Communication, Aes-
thetics and X - Milan, Italy.

8. FUTURE WORK
Based on the scalability of this project and the proposed

solutions to implement, we’ve listed some future work. We
argue that this project can take different valuable paths both
as a networked environment and as an AV platform of free
access all over the world.

• As explored in section 7, we believe it is possible to
respond to various future needs of this system by pro-
gramming automation rules that also respect the free-
dom needed by the agents who are using it.

• Transpose this system into a decentralized architecture
(i.e. using blockchain) by creating low-level instances
on each device.

• Generation of AV content between machines using
stochastic modeling (i.e. VMM’s[6]). Allowing the
creation of musical phrases between people without de-
terministic induction.

• A dynamic learning system that allows to create pre-
sets on back-end socket matrices to enable new inter-
action models

• The study of latency focused on data streaming in
adaptive systems is always a valuable type of research
to increase its robustness.

9. CONCLUSIONS
In this article we have presented a system made with web

technologies that emerged from an investigation in computer
music, media art and collaborative interfaces. We explore its
existence as a digital structure, the technologies it uses, its
properties as an AV platform in the cloud, and some steps
that can be taken as future development.

Throughout this text, some paradigms inherent to con-
temporary AV performance are mentioned. The way artists
interact is an issue that is mirrored in this project, and the
attempt to respond to these needs is what led to use tech-
nologies such as node.js and socket.io.

The proposed system allows AV interaction from multiple
devices distributed over potentially large distances across
the globe, establishing communication matrices between ma-
chines.

10. ACKNOWLEDGMENTS
This article reflects and exposes part of an investigation

conducted under Braga Media Arts on collaborative AV en-
vironments and web technologies. All related contributions
are in it’s context, part of UNESCO’s26 Creative Cities Net-
work (UCCN)27.

11. REFERENCES
[1] D. Akoumianakis, G. Ktistakis, G. Vlachakis,

P. Zervas, and C. Alexandraki. Collaborative music
making as remediated practice. In 2013 18th
International Conference on Digital Signal Processing
(DSP), pages 1–8. IEEE, 2013.

[2] J. T. Allison, Y. Oh, and B. Taylor. Nexus:
Collaborative performance for the masses, handling
instrument interface distribution through the web. In
NIME, pages 1–6, 2013.

[3] L. Arandas, J. A. Gomes, R. Penha, and
G. Bernardes. Never the less: A performance on
networked art. Proceedings of the xCoAx - Conference
on Computation, Communication, Aesthetics X,
Milan, Italy - In preparation, 2019.

[4] Á. Barbosa. Displaced soundscapes: A survey of
network systems for music and sonic art creation.
Leonardo Music Journal, pages 53–59, 2003.

[5] J. Beggs and D. Thede. Designing web audio. ”
O’Reilly Media, Inc.”, 2001.

[6] R. Begleiter, R. El-Yaniv, and G. Yona. On prediction
using variable order markov models. Journal of
Artificial Intelligence Research, 22:385–421, 2004.

[7] B. Bongers. Physical interfaces in the electronic arts.
Trends in gestural control of music, pages 41–70, 2000.

[8] R. Carvalho. From clavilux to ufabulum. Journal of
Science and Technology of the Arts, 5(1):43–52, 2013.

26UNESCO’s European Website https://en.unesco.org
27UCCN https://en.unesco.org/creative-cities/home

[9] E. Chew, R. Zimmermann, A. A. Sawchuk,
C. Kyriakakis, C. Papadopoulos, A. François, G. Kim,
A. Rizzo, and A. Volk. Musical interaction at a
distance: Distributed immersive performance. In
Proceedings of the MusicNetwork Fourth Open
Workshop on Integration of Music in Multimedia
Applications, pages 15–16, 2004.

[10] A. Clément, F. Ribeiro, R. Rodrigues, and R. Penha.
Bridging the gap between performers and the audience
using networked smartphones: the a.bel system. In
Proceedings of the International Conference on Live
Interfaces, 2016.

[11] N. Correia et al. Interactive audiovisual objects. School
of Arts, Design and Architecture, 2013.

[12] P. Cozzi. WebGL insights. AK Peters/CRC Press,
2015.

[13] B. Danchilla. Beginning WebGL for HTML5. Apress,
2012.

[14] J. Dirksen. Learning Three.js: the JavaScript 3D
library for WebGL. Packt Publishing Ltd, 2013.

[15] J. Gray. Google chrome: the making of a
cross-platform browser. Linux Journal, 2009(185):1,
2009.

[16] A. Henderson. Interaction design: beyond
human-computer interaction. Ubiquity, 2002(March):6,
2002.

[17] S. Holland, T. Mudd, K. Wilkie-McKenna,
A. McPherson, and M. M. Wanderley. New Directions
in Music and Human-Computer Interaction. Springer,
2019.

[18] Z. Jin, R. Oda, A. Finkelstein, and R. Fiebrink. Mallo:
A distributed, synchronized instrument for internet
music performance. In Proceedings of the international
conference on new interfaces for musical expression
(NIME), 2015.

[19] L. Kalita. Socket programming. International Journal
of Computer Science and Information Technologies,
5(3):4802–4807, 2014.

[20] C. Kemp and B. Gyger. Professional Heroku
Programming. John Wiley & Sons, 2013.

[21] Y. Mann. Interactive music with tone. js. In
Proceedings of the 1st annual Web Audio Conference.
Citeseer, 2015.

[22] A. Mardan. Express.js Guide: The Comprehensive
Book on Express.js. CreateSpace Independent
Publishing Platform, 2013.

[23] C. McKinney. Collaboration and embodiment in
networked music interfaces for live performance. PhD
thesis, University of Sussex, 2016.

[24] R. Mills. Telematics, art and the evolution of
networked music performance. In Tele-Improvisation:
Intercultural Interaction in the Online Global Music
Jam Session, pages 21–57. Springer, 2019.

[25] C. Nilson. Live coding practice. In Proceedings of the
7th international conference on New interfaces for
musical expression, pages 112–117. ACM, 2007.

[26] C. R. Pereira. Aplicações web real-time com Node. js.
Editora Casa do Código, 2014.

[27] M. Puckette et al. Pure data: another integrated
computer music environment. Proceedings of the
second intercollege computer music concerts, pages

37–41, 1996.

[28] L. R. Rabiner and B.-H. Juang. An introduction to
hidden markov models. ieee assp magazine, 3(1):4–16,
1986.

[29] S. Rafaeli and F. Sudweeks. Networked interactivity.
Journal of computer-mediated communication,
2(4):JCMC243, 1997.

[30] D. B. Ramsay and J. A. Paradiso. Grouploop: a
collaborative, network-enabled audio feedback
instrument. In NIME, pages 251–254, 2015.

[31] R. J. Rost, B. Licea-Kane, D. Ginsburg, J. Kessenich,
B. Lichtenbelt, H. Malan, and M. Weiblen. OpenGL
shading language. Pearson Education, 2009.

[32] C. Sá. What is an Interface? The Entification and
Identification of the Interface as a Mediation Complex.
PhD thesis, Catholic University of Porto, 2011.

[33] G. Weinberg. Interconnected musical networks:
Toward a theoretical framework. Computer Music
Journal, 29(2):23–39, 2005.

[34] M. Williams, C. Benfield, B. Warner, M. Zadka,
D. Mitchell, K. Samuel, and P. Tardy. Push data to
browsers and micro-services with websocket. In Expert
Twisted, pages 285–304. Springer, 2019.

[35] S. Wilson, D. Cottle, and N. Collins. The
SuperCollider Book. The MIT Press, 2011.

[36] T. Winkler. Composing interactive music: techniques
and ideas using Max. MIT press, 1998.

[37] M. Wright. Open sound control: an enabling
technology for musical networking. Organised Sound,
10(3):193–200, 2005.

[38] R. Zimmermann, E. Chew, S. A. Ay, and M. Pawar.
Distributed musical performances: Architecture and
stream management. ACM Transactions on
Multimedia Computing, Communications, and
Applications (TOMM), 4(2):14, 2008.

