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ABSTRACT
TidalCycles has rapidly become the most popular system for
many styles of live coding performance, in particular Algo-
raves. We created a JavaScript dialect of its mini-notation
for pattern, enabling easy integration with creative cod-
ing tools. Our research pairs a formalism describing the
mini-notation with a small JavaScript library for generat-
ing events over time; this library is suitable for generating
events inside of an AudioWorkletProcessor thread and for
assisting with scheduling in JavaScript environments more
generally. We describe integrating the library into the two
live coding systems, Gibber and Hydra, and discuss an ac-
companying technique for visually annotating the playback
of TidalCycles patterns over time.

1. INTRODUCTION
In canonical live coding performances, performers create
artistic output by programming it in front of an audience,
often projecting their source code for the audience to follow
[21]. Such performances have increased in popularity over
the years; for example, organizers have promoted hundreds
of concerts in one genre of live coding performance, Algo-
rave[4], where performers take turns live coding (predom-
inantly) dance music. The browser is a popular platform
for developers creating live coding systems, with many en-
vironments that primarily target music, visuals, and chore-
ography, in addition to hybrid systems enabling performers
to generate both audio and visual content (see Section 2).
Our research takes the pattern mini-notation of TidalCy-
cles[11] and brings it to JavaScript as a library that can be
incorporated into browser-based live coding environments.
The TidalCycles mini-notation is a terse and expressive way
to describe patterns of values over time, and we hope that
bringing this popular representation to the browser will en-
courage adoption across many systems. Section 4 describes
some of the integrations we and other developers have cre-
ated to date.

But first we begin by describing the state of live coding in
the browser, alongside a brief introduction to TidalCycles.
We describe our implementation of the parser and accom-
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panying library, and their integration into various browser-
based creative coding systems. We then discuss techniques
for visually annotating the playback of TidalCycle patterns,
taking advantage of the browser’s flexible markup capabili-
ties. We conclude with a short discussion of open questions,
and possible directions for future work.

2. BACKGROUND
Live coding is growing in popularity, with new systems in-
troduced every year and an growing number of local interest
groups and performances. The browser has become a popu-
lar target for many live coding systems, thanks to its ubiq-
uity, powerful graphics capabilities, and increasingly power-
ful audio features. In this section we discuss existing live
coding tools and their notations for music—with an empha-
sis on TidalCycles—and the state of current browser-based
live coding systems.

2.1 TidalCycles
TidalCycles is a domain-specific language embedded within
Haskell [11]. It has proven to be one of the most popular
choices for live coding, particularly in the Algorave genre,
perhaps due to its strong emphasis on time and rhythm [10].
For example, in a recent four-day streamed live coding event,
sixty-five of approximately one hundred and sixty perfor-
mances primarily used TidalCycles[19]. The next most pop-
ular end-user language in the event was SuperCollider[9],
with eighteen live coding performances1.

TidalCycles outputs OSC or MIDI messages, and perform-
ers have used it to control a wide variety of applications. It
is most often used to remotely control SuperDirt, an audio
sample playback and manipulation engine written in Super-
Collider.

2.2 Live Coding and Patterns
There are a variety of techniques for generating patterns
in live coding systems. In ixi lang[6], a mini-language that
controls the SuperCollider audio server, patterns (or scores
in ixi lang terminology) are defined using strings, with the
location of each token determining the timing of notes and
sample playback. In both Gibber[15] and in Conductive[3],
a Haskell live coding environment where the programmer
controls semi-autonomous agents, there are separate pat-
terns for values in sequences and controlling the timing of

1Although live coding in the SuperCollider language is ar-
guably not as popular as live coding in TidalCycles, many
live coding systems provide an alternative language that uses
the SuperCollider audio server for synthesis and processing.

https://algorave.com
https://algorave.com


sequence output. For example, in Listing 1, the pattern
[0,1,2,3] selects notes from a default global scale while
the pattern [1/4,1/2] specifies that these notes will have
alternating durations of a quarter note and a half note.

syn = Synth ()
syn.note.seq( [0 ,1 ,2 ,3] , [1/4 ,1/2] )
Listing 1: A sequence in Gibber

Other systems opt for more verbose temporal recursions
(functions that invoke themselves over time[17]) or corou-
tines that provide low-level control of timing and output.
For example, the Extempore and Imporomptu systems use
verbose temporal recursions to generate patterns, often
based on sampling continuous waveforms [18]. While these
recursions are lengthy to type by hand (at least in the con-
text of a live performance), the environments include text-
editing macros that make insertion and editing fast and
fluid. Sonic Pi[1] uses a terser design similar to a coroutine
named the live_loop, where loops can sleep and are ed-
itable. Gibber and Gibberwocky[13] also support temporal
recursions, in addition to their shared pattern affordances.

The mini-notation in TidalCycles is based on the Bol Pro-
cessor (BP2)[2]. Polyrhythms, polymeter, repetition, and
rhythmic subgrouping can all be described quite tersely. For
example, the pattern string ‘[kd sd, ch ch oh]’ describes
a pattern where a kick drum and a snare drum are each half
a cycle in duration, while the closed hihat and open hihat
sounds are each a third of a cycle, creating a two against
three polyrhythm. The expression of both timing and out-
put values in the same text string provides a terseness that
lends itself well to live coding. In our experience develop-
ing and performing with Gibber, we found that while defin-
ing output and timing separately has it merits, we often
wanted the expressiveness of a combined notation similar to
the TidalCycles mini-notation.

2.3 Browser-based Live Coding Environ-
ments

There are at least a dozen browser-based environments for
live coding performance2. Some are geared heavily towards
audio3, while others emphasize graphics [5, 16], and at least
one targets choreography4. Our hope is that the research
presented here will be broadly applicable to a variety of such
systems. In this vein, we discuss the integration of our li-
brary into two browser-based live coding environments, Hy-
dra and Gibber, in Section 4.

Of particular relevance to this paper is Estuary [12], which
provides a projectional editing interface for TidalCycles (in
addition to other live coding systems), and runs in the
browser. The authors developed the software in Haskell,
which was then compiled into JavaScript. One notable ad-
vantage of this approach is that almost all of the features
of TidalCycles were immediately available to the authors,
while our approach requires implementing each of TidalCy-
cles’ features individually. For this reason, many features in
our library are still in development / discussion, as described
in Section 5. A comparative advantage of our library is that

2for a fairly comprehensive list of live coding
systems, see https://github.com/toplap/awesome-
livecoding/blob/master/README.md
3https://live.csound.com/
4https://github.com/sicchio/terpsicode

it is easy to incorporate into browser-based projects without
requiring the use of a Haskell compiler5, potentially easing
adoption into other systems.

3. IMPLEMENTATION
We created two modules, designed to work in tandem, en-
abling the use of the TidalCycles patterns in the browser.
The first module is a parser for the TidalCycles mini-
notation. This parser was written using the parsing expres-
sion grammar formalism (or PEG); we have prior experi-
ence using this formalism to teach workshops on live coding
language design [20]. The PEG.js library 6 translates the
TidalCycles grammar into a parser that generates appropri-
ate JavaScript data structures for querying, which is handled
by our second module. Following the general structure of the
TidalCycles library, this module exposes a queryArc func-
tion which accepts three arguments: a pattern, a start time,
and a duration 7. From these three arguments a list of val-
ues and timestamps is generated; the timestamps are offsets
from the starting phase argument passed to queryArc and
the values typically correspond to either indices in a scale
denoting a pitch to be played or an identifier for a sam-
ple/sound to be triggered. The code example below shows
these two modules in use employing the CommonJS module
syntax.

parser = require (’./ dist/ tidal .js ’)
queryArc = require (’./ src/ queryArc ’). queryArc

pattern = parser . parse ( ’0 [1 2] ’ )
events = queryArc ( pattern , 0, 1 )
/∗

∗ events = [
∗ { value :0, arc :{
∗ start : Fraction (0) , end: Fraction (1 ,2) }
∗ },
∗ { value :1, arc :{
∗ start : Fraction (1 ,2) , end: Fraction (3 ,4) }
∗ },
∗ { value :2, arc :{
∗ start : Fraction (3 ,4) , end: Fraction (1) }
∗ }
∗ ]

∗/

Listing 2: Using the parser and query function

We combined the two modules together into a single
Pattern object for easier use. The Pattern constructor ac-
cepts an argument pattern written using the TidalCycles
mini-notation; the generated pattern object can then be
queried by passing a starting phase and a duration to its
query method. The Pattern.query method also sorts its
output by the temporal proximity of each event to the start
time of the query. Listing 3 shows this in action, assuming
that the Pattern object has been imported into the global
namespace.

5Despite the unfamiliarity of Haskell for most web devel-
opers, the authors of Estuary make many interesting argu-
ments for the security and type safety of Haskell in browser-
based projects.
6https://pegjs.org
7In TidalCycles the combination of a start time and a du-
ration is known as an Arc

https://live.csound.com/


const pattern = Pattern (’0 [1 2] ’)
const events = pattern . query ( 0, 1 )
// same event output as Listing 1

Listing 3: Use of Pattern object

In addition to these two modules and the Pattern object,
the repository also contains a number of demos, and a set
of over eighty unit tests covering the parser.

4. INTEGRATION
A demonstration using the Pattern object described in
Sec. 3 with an HTML <canvas> element is included in the
repository for the project and shown in Fig. 1. This fig-
ure draws the pattern ’[0 [1 2]*2 <3 4 5> [6 [7 8]]*4
9]*5’, where each number 8 is assigned to represent a dif-
ferent color. The demo queries a user-provided pattern for a
selected number of cycles, and then loops through all of the
generated events drawing rectangles based on the duration
and value of each event.

We have also successfully integrated this library into two
live coding environments: Olivia Jack’s Hydra and Gib-
ber, developed by the first author. Developer/performer
Diego Dorado also integrated the library into his browser-
based live-emojing playground 9. In this playground, emojis
are used as TidalCycles groups. A pattern such as ’[,*2
,*2?]/’ can be interpreted as a TidalCycles pattern, where
each emoji corresponds to a predetermined sound. Dorado’s
work uses Tone.js[7] for sound generation. Our repository
also includes an audiovisual representation of TidalCycles
patterns written with p5.js[8]. These two examples help
demonstrate that the integration with common JavaScript
libraries is relatively simple, enabling developers to bring the
TidalCycles mini-notation to various browser applications.

Figure 1: Using the library in conjunction with the HTML canvas
object. In this example, numeric values are assigned to colors and
patterned using the TidalCycles mini-notation. The *5 at the end of
the visualized pattern causes the entire pattern to repeat five times.

4.1 Integrating with Hydra
Hydra10 is a popular browser-based environment for live
coding visuals using the metaphor of analog video synthe-
sis. When creating a video synthesis object, Hydra enables
coders to assign functions to parameters instead of numbers;

8The exceptions are numbers to the right of the * operator,
which instead controls repetition
9https://diegodorado.com/en/labs/live-emojing

10http://hydra-editor.glitch.me/

these functions are then evaluated every frame to determine
the parameter’s value. In order to integrate our Pattern ob-
ject into Hydra, we first import the pattern.js file included
in the source code repository, and then create a function that
accepts TidalCycles mini-notation as an arugment. Invok-
ing this function creates a function that updates an internal
phase, queries an associated pattern for events, and returns
values generated by the query. The code for the Tidal func-
tion shown in Fig. 2 (not counting on the included Pattern
module) is given in Listing 4.

Tidal = function ( pattern ) {
let value = null ,

phase = 0,
phaseIncr = 1/120 ,
events = [],
end = −Infinity

const p = Pattern ( pattern )

const out = function () {
phase += phaseIncr

if( events . length <= 0 && phase > end ) {
phase = 0
events = p. query ( phase , 1 )

}

const next = events [0]
if( next !== undefined

&& phase > next.arc. start . valueOf () ) {
const event = events . shift ()
value = event . value
end = event .arc.end. valueOf ()

}

return value
}

return out
}

Listing 4: Hydra Integration

Figure 2: Using the function from Listing 4 to create time-based
patterns in Hydra.

4.2 Integrating with Gibber
Gibber is a browser-based tool for live coding both music
and ray-marched visuals. Our integration enables creative
coders to use the Tidal mini-notation to create patterns that
can be applied both domains; the TidalCycles mini-notation
can be used to generate musical patterns as well as control
3D geometries. We additionally provide a unique, animated



annotation system that marks individual tokens in the mini-
notation and reveals when events associated with each token
are triggered.

4.2.1 Integrating with the AudioWorkletProcessor
Audio in Gibber runs in an AudioWorkletProcessor thread;
this includes all sequencing and scheduling, so that these sys-
tems can also be modulated using audio-rate signals. The
use of the Pattern object needs to be as efficient as pos-
sible to fit in the tight time constraints specified for the
AudioWorkletProcessor by the Web Audio API (128 sam-
ples per buffer). At first, we encountered problems with the
speed of parsing patterns with deeply nested tokens; how-
ever, after specifying that the parser should cache results,
these problems disappeared at the slight expense of addi-
tional processing time for the caching itself. The current
unit test suite of over eighty tests completes in an average
of 42 ms, indicating an average test time of about half
a millisecond. We are optimistic that we can optimize the
grammar to improve these results, but are also relatively un-
concerned given that parsing—which typically takes much
more time than querying—only occurs when a user creates
a new pattern, a relatively infrequent event.

4.2.2 Annotating TidalCycles Patterns
One relatively unique feature in Gibber is the use of ani-
mated annotations to reveal system state within the source
code editor. These annotations and visualizations can take
many forms, from changing the source code itself, to high-
lighting tokens in the editor, to using HTML canvas-based
visualizations of modulation signals that animate over time.

In order to annotate TidalCycles patterns in a similar
fashion we extended our parser to assign a unique identi-
fication number to each token depicting a value, and to also
include the each token’s location in the code editor. With
this information we can create a <span> element wrapping
the token, and assign a unique CSS class to it based on its
ID number. This enables us to always know the precise loca-
tion of each token in our editor, even as the code is actively
being edited11.

Figure 3: A simple TidalCycles pattern with three different
annotated/animated states of activity. In the first line of code, no
sounds are being triggered. In the second line, the kick drum (kd)
has just been triggered, while the snare drum has been triggered in
the final line.

The highlighting effect, in our opinion, is subtle, and while
it is difficult to portray here in a static document, when ani-
mated the flashes of activity are clear and visible. Although
we could use an annotation with higher contrast, our past
research has indicated that many people prefer such anno-

11Thanks to the exceptional
http://codemirror.net/)CodeMirror library for provid-
ing editing interface that supports this

tations to be less distracting[14], so that they don’t distract
from the act of programming.

Figure 4: Multiple annotated sequences running concurrently. One
kick drum token and two notes in the bass line are highlighted to
indicate activity.

5. CONCLUSIONS AND FUTURE WORK
We have created a JavaScript library for parsing and query-
ing the mini-notation of TidalCycles, and successfully in-
tegrated it into two live coding environments, Gibber and
Hydra. Our research also described a novel technique for
annotating the playback of TidalCycle patterns to poten-
tially improve audience and programmer understanding of
the TidalCycles mini-notation.

However, decisions and challenges remain. TidalCycles
contains functions to both specify patterns and to trans-
form them over time; these transformations are missing from
our current implementation. Some are relatively simple to
implement and have been included in our Gibber integra-
tion, such as shifting the placement of patterns by adding
or subtracting from the current phase of the pattern. Other
transformations are more difficult. In regards to integrat-
ing the mini-notation into Gibber, it is unclear whether it
is preferable to use Gibber’s existing pattern manipulation
API to also transform patterns generated by the TidalCy-
cles mini-notation, or if we should include a separate API
that matches the TidalCycles for manipulating patterns.

Having a separate implementation of the TidalCycles
mini-notation also raises the possibility of creating a new
dialect. For example, the mini-notation currently doesn’t
have a mechanism for specifying the loudness of individual
notes or sample triggers. We plan to add this to our library,
creating a minor fragmentation between the two notations.
Having the language available in JavaScript might encourage
more developers to experiment with the grammar and add
their own additional features; perhaps some of these features
will eventually make their way back to the canonical Haskell
implementation to the benefit of the greater community.
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