
Creating a DJ-ready Web Player for Interactive Music

Attila Haraszti
Independent Author

attila@haywirez.com

ABSTRACT
The talk will explore the motivation, challenges and solutions
devised in a year-long quest to build a DJ-ready web player for
songsling.studio, a tool I’m building for publishing and presenting
interactive music on the Internet. The player itself utilizes an
HLS-like solution as a streaming mechanism, and allows arbitrary
changes to the playback speed, direction and content. I will dive
into the history and legacy of computerized music playback
systems, the dangers of leaving music presentation in the hands of
a few dominant platforms and highlight the unrealized potential of
our everyday computing devices.

1. INTRODUCTION
In a short introduction story chronicling my background in
electronic music production and DJing, I will illustrate how the
format of interaction influences the content of music and the
process of creation. I will point out that by 2020, an entire
generation will have grown up experiencing music
overwhelmingly through dominant web streaming platforms such
as YouTube, Spotify or Soundcloud.

2. THE POWER AND LEGACY OF
PLAYBACK SYSTEMS
By a combination of earlier technical limitations and conventions
related to digital playback, the web players provided by these
platforms promote an extremely limited way of interacting with
music, even when compared to previous analog systems of
inferior quality. The end result is an encouragement of passive
listening in order to steer the listeners towards the monetary goals
of the platforms, instead of nurturing what should be a sacrosanct,
intimate relationship between people and music [1].

2.1 Examination of Current Playback Systems
The first surprising feature of typical present-day media players is
how little of the visual user interface is dedicated to any kind of
meaningful control over the sonics themselves. Control elements
such as a seekbar, playback and volume control occupy typically
below 3-5% of the visual field. They are also limited in their
essence – the seekbar quickly jumps to the correct position in a
recording, but limited auditory information is conveyed when

compared to cueing music using a fast-forward or rewind action
on a classical turntable or tape machine.

2.2 Desired design
In my approach to designing a player from scratch, I set a hard
design constraint of allowing the user full control and
explorability of the sound played. That means that at any time,
listeners should have the ability to near-instantly reverse
playback, speed up or slow down. Provided that the given portion
of a composition has been fetched from the network, they should
also be able to near-instantly jump to that arbitrary point in the
timeline.

3. THE TRIALS & TRIBULATIONS OF
BUILDING A PLAYER USING THE WEB
AUDIO API
Most players on the web make use of the <audio> HTML
element, even if it might be piped into a Web Audio API graph
via a MediaElementSourceNode to provide more pleasant fade-ins
and fade-outs. This approach is unsuitable for our use case given
the inability to control playback speed in a satisfactory manner.
Besides the limited playback rate range of 0.5-4x, most browsers
implement pitch-preserving and time-stretching algorithms that
were likely designed with one use case in mind — listening to
human speech at faster or slower speeds. The proposed
preservesPitch attribute that would allow developers to switch off
this processing step is not implemented in any browser except
Mozilla Firefox. Backwards playback is also not possible,
therefore I had to explore a more low-level solution using the
Web Audio API.

3.1 The Naïve Approach
An AudioBufferSourceNode has a k-rate playbackRate parameter
that has a sufficient resolution for controlling playback speed for
our needs. However, compositions are typically much longer than
a single buffer is designed to hold, and it also would not be
efficient to fetch them from a network resource using a single,
large request. Therefore, the use of streaming segmentation
techniques such as HLS1 is well-advised. The Web Audio API
provides sufficient precision for scheduling so that individual
segments of audio can be played one after another in a seamless,
gap-free manner — colloquially known as “buffer stitching”. We
can therefore use this technique to pre-schedule a few segments in
front of the playhead as needed. The problem arises from the fact

1 HTTP Live Streaming — a protocol for transferring unbounded

streams of multimedia data

Licensed under a Attribution-NonCommercial-NoDerivatives 4.0 International
License (CC BY 4.0). Attribution: owner/author(s).
Web Audio Conference WAC-2019, December 4–6, 2019, Trondheim, Norway.
© 2019 Copyright held by the owner/author(s).

that the AudioBufferSourceNodes are fire-and-forget, single use
only — they can be stopped before they start, but not rescheduled.
As the playback speed should be allowed to change at any point
and in an unpredictable manner, all scheduled nodes that have not
yet started playback have to be canceled. Even if the same
AudioBuffer can be reused and referenced in several
AudioBufferSourceNodes, creating the new nodes takes too long,
which leads to problems when our current playhead position is
close to the tail edge of the node that is currently playing.

3.2 Buffers of Buffers
As described above, it is not possible to create and reschedule the
AudioBuffers sufficiently fast. Luckily, this can be circumvented
by taking inspiration from multiple buffering techniques used in
computer graphics rendering for preventing visual tearing or
stuttering. Thus, we can simply create a sufficiently large cyclic
buffer of AudioBufferSourceNodes in advance and backfill them
as needed. For a use case involving audio, we need to have
significantly more nodes ready than the double or triple buffered
approach typically used for graphics. I have found that an
acceptable perceptual responsiveness can be achieved by
approximating the number of common frames per second refresh
rates.

3.3 Controlling state
The implementation of the necessary scheduling mechanism
quickly leads to complex state management issues that proved
cumbersome to debug. In order to make it easier to reason about
the code and improve code maintainability, I have opted for
formalizing the business logic using statecharts, a well-known
application modeling technique [2]. This allowed the decoupling
of the implementation from the description of behavior, with
several substates representing particular components of the code.

3.4 Custom resampling via AudioWorklet
Unfortunately, the buffer-stitching approach has another problem
that materializes even in the best-controlled scenarios:
Interpolation between sample frames at certain sample and
playback rates might lead to inconsistent frame boundaries
between neighboring buffers. Most of the times, this is not
disturbingly perceptible, but it does become apparent if we test the
player using a perfectly segmented sine wave. As a workaround
with more added complexity, overlapping buffers can be created
with precisely scheduled volume switchovers [3]. An alternative,
theoretically perfect solution can be achieved by implementing a
custom resampling algorithm and playhead tracking mechanism
inside an AudioWorklet process. However, as popular browser
support is still lagging, we have to weigh the benefits and
tradeoffs.

4. A VISION OF THE FUTURE:
PRESENTING MUSIC VIA WEB APPS
INSTEAD OF RECORDINGS
My goal was to preserve, or at least imitate, the tactile feedback
and interaction allowed by analog playback mechanisms.

However, it is just as important to examine what future types of
musical interaction could come as a result of a networked,
distributed online playback system.

In my vision, artists should be concentrating on interactive music
that supersedes the current focus on simple, static recordings. This
means that each web player becomes a networked interaction
portal, which can influence what other listeners hear and see.
Using the latest iteration of the player engine, I will demonstrate
an implementation of horizontal re-sequencing [4, 5] as a
composition method of interactive music and what possibilities
this might offer to the wider community of music producers.

5. ACKNOWLEDGMENTS
I would like to give my thanks to Stephan Hesse for the
suggestion on researching computer graphics processing
approaches, Chris Wilson for open-sourcing his DJ deck
implementation using the Web Audio API [6] and Christoph
Guttandin for creating and maintaining the standardized-audio-
context library [7]. I would also like to express my gratitude for
all current and previous organizers of the Web Audio Conference
for inspiration and support, as well as electronic music pioneers
such as Laurie Spiegel and Jeff Mills for making me continually
rethink my approaches to music.

6. REFERENCES
[1] Spiegel, L. 1992. Music: Who Makes it? Who just takes it?

Electronic Musician #8, 1 (January 1992), 114.
Retrieved October 6, 2019 from
http://retiary.org/ls/writings/em_back_page_slashed.html

[2] Harel, D. 1987. Statecharts: A visual formalism for complex
systems. Sci. Comput. Program. 8, 3 (June 1987), 231-274.
DOI= https://doi.org/10.1016/0167-6423(87)90035-9.

[3] Harris, R. 2016. Phonograph.js: Tolerable mobile web audio.
(August 2016). Retrieved October 6, 2019 from
https://medium.com/@Rich_Harris/phonograph-js-tolerable-
mobile-web-audio-55286bd5e567

[4] Sweet, M. 2015. Writing interactive music for video games:
a composers guide, Upper Saddle River, NJ: Addison-
Wesley. (September 2014), 278-279

[5] Phillips, W. 2017. A Composer’s guide to game music, Mit
Press Ltd. (2017), 188-193

[6] Wilson, C. wubwubwub (2014), GitHub repository,
https://github.com/cwilso/wubwubwub

[7] Guttandin, C. standardized-audio-context (2019), GitHub
repository, https://github.com/chrisguttandin/standardized-
audio-context

