
Tweakable

Julian Woodward
Visual Systems Ltd

42 Veda road London
jw@vsys.co.uk

ABSTRACT
In this paper, I describe some of the core features of Tweakable, a
new interactive algorithmic music system. Live examples can be
found on the web at https://tweakable.org/.

1. INTRODUCTION
Tweakable is a web-based visual programming system (VPS)
designed to lower the barrier of entry for creating algorithmic
music, while still offering vast possibilities for experimentation.

From a palette of components, users can quickly design an
algorithmic system, and expose parameters through a user interface
that enable the algorithm to be ‘tweaked’ in real time.

2. INCLUSIVITY
A key goal of Tweakable is put into anyone’s hands the tools to
experiment, play, discover and share ideas about how mathematics,
sound and music can interrelate, acting as a catalyst for learning.
Web-based, it is easy for users to share projects without worrying
about missing dependencies. Much of the software already
available for making algorithmic music requires specialist
knowledge and sometimes complex software / hardware setup.
Hugely successful, Max MSP[1] “provides an open and
experimental environment for artistic expression, (however) it also
restricts access to many users through a steep learning curve and
requirement for low-level DSP knowledge”. [2]

As a painter/programmer I aim to enhance engagement and user
experience by infusing the user interface with a strong visual
quality.

Figure 1. Visualization example - Tweakable Musical

Tapestry

Web Audio Conference WAC-2019, December 4–6, 2019, Trondheim, Norway.
© 2019 Copyright held by the owner/author(s).

3. COMPONENTS
Available components fall into three categories: Data input / flow,
Sequencing, and Audio. In addition, it is possible to create custom
modules to encapsulate and reuse behavior.

3.1 Data input / flow
Handling user input and controlling the way information flows
through the system.

3.1.1 Data input
Control input components (Slider, Knob etc) enable user
interaction and can be connected to parameters to enable the
algorithm to be tweaked.

Some components automatically detect touch, enabling the x and y
coordinates of the touch to be wired to parameters.

Midi input & output allows midi to be received from and sent to
other applications.

3.1.2 Data flow
Data flow components include state machine, switch, counter,
splitter, and filter, providing ways to control the way data flows
through the system. State Machine can be connected to multiple
components’ parameters to create cross-component presets which
can be selected or performed as a set by transitioning between each
setting at specified intervals.

3.2 Sequencing
3.2.1 Sequence source
A sequence is a list of instructions that can be scheduled to generate
events or control automation.

Graph components generate sequences from a mathematical
function, or instead receive user input from touch or mouse.

Grid components generate sequences from user interaction with a
piano-roll style grid.

Script components generate sequences using a custom notation
language. Letters of the alphabet correspond to notes of the scale,
lower / uppercase changes corresponding to lowering / raising the
pitch / octave.

Rhythm components generate sequences from note / step
parameters using the Euclidean algorithm [3].

3.2.2 Transformation, modulation, composition
Sequences can be passed through various transformations: reverse,
invert, crop, transpose, scale, stretch, constrain etc. which can be
applied conditionally or periodically, parameters changing in real
time. Users can also code their own transformations in JavaScript.

Complex patterns can be generated by modulating one sequence
with another. Sequences can be combined in series using letter
notation (for example ABCBA describes a Rondo form). A

sequence can be exploded by the Harmonize component, which
generates multiple contrapuntal parts taking a chord progression as
input.

3.3 Audio
Sequences are rendered into audible sound by connecting them to
a scheduler, and from the scheduler to a pre-built instrument
(sampler or synth), or combinations of lower-level components
such as oscillators, envelopes and LFO’s, whose parameters can
also be automated using sequences. Audio effects are implemented
as objects that can be connected to audio outputs.

3.3.1 Automation
Individual parameters of audio components can be automated by
sequences either by connecting the scheduled sequence directly to
the parameter input, or by using Controller components which
listen for events on specified controller numbers on the instrument.

3.4 Custom modules

Figure 2. An example of a module that takes a sequence as

input and outputs four sequences: the original, inverse,
reverse, and inverse-reverse

Behavior can be encapsulated by creating modules, which act as
containers for other components and can expose input and output
parameters. See Figure 2 for an example of a module.

Custom modules can be exported and imported into other projects,
and shared between users.

4. APPLICATION ARCHITECTURE
A key design concern was to ensure a clean separation between the
User Interface (‘UI’ / ‘front end’) and the conceptual ‘back end’
functionality so that music and sound can continue to play when
switching between views, and to minimize dependency on the
front-end framework. Maintaining independence from the UI,
audio output can be prioritized where necessary, and animation
disabled where it becomes a problem for low performance devices.
Components are implemented as TypeScript classes that talk to
each other using the Reactive Extensions for JavaScript library
(RxJS). Subscriptions are created between them when connections
are made. Component classes are data-bound to a corresponding UI
component (implemented with Angular).

4.1 Aesthetic choices
The UI has been designed to minimize clutter and be as clear as
possible. In the node-graph view, components each have a strong
visual identity which hopefully helps with the understanding of
their function.
A built-in palette system enables users to change the overall color
palette. Rather than choosing colors separately for each element,

palette indices are assigned, helping to ensure an overall visual
consistency by limiting the palette of colors in use.

4.2 Mobile devices
Users can design their UI to be responsive by defining both narrow
screen and wide screen views. Tweakable automatically selects the
version which matches the end-user’s device width. All
components work with touch devices.

4.3 Visualization
Visualization is employed to aid user understanding of the patterns
controlling the audio output. Each UI component implements an
‘animate’ function. Rather than running multiple
requestAnimationFrame (RAF) loops, a single RAF loop runs,
calling each component’s ‘animate’ function in turn. Visualizations
use HTML5 canvas. Audio visualizations are provided for
waveform ‘oscilloscope’ and audio envelope & partials. Sequences
are visualized by the Piano Roll component. Custom visualizations
can be coded in JavaScript.

Figure 3. Tweakable algorithmic music example.

Melody and bassline and can be controlled by touch-dragging
up/down (pitch) and left/right (shape), rhythm can be

modified and rotated by dragging horizontally / vertically

5. ACKNOWLEDGMENTS
Acknowledgements are due to many open source software
libraries, notably:

• RxJS (https://rxjs.dev) handles all data flow between
components

• Tone.js (https://tonejs.github.io/) for audio instruments
and effects (see 3.3), as well as envelope, filter and LFO
are implemented as components

• jsPlumb (https://github.com/jsplumb/jsplumb) - the
ability to drag connections between nodes in the ‘node
graph’ GUI

• Codemirror (https://codemirror.net/) - a coding window
enabling live coding in JavaScript or the in-built custom
music notation language

• Angular (https://angular.io/) - the front-end framework
that provides data-binding capability

6. REFERENCES
[1] Cycling ’74. Max MSP.[Software] Cycling ’74. Available from:
https://cycling74.com. 2019

[2] Bullock, Jamie. 2018. Designing interfaces for musical
algorithms. The Oxford Handbook of Algorithmic Music, The
Oxford University Press, 2018

[3] Toussaint,Godfried. The Euclidean Algorithm Generates
Traditional Musical Rhythms. School of Computer Science,
McGill University Montreal

