
Ongaq JS: An elementary library for programming music

Hiroyuki Takakura
CodeNinth Ltd, Tokyo

708 9-20 Higashi-Kishicho, Urawa, Saitama
takakura@codeninth.com

ABSTRACT
In this paper, I describe concepts and usages of Ongaq JS, a new
elementary JavaScript library for programming music. This
library makes it possible for many people, especially beginners
or young students, to program music using various sound
resources.

We, CodeNinth Ltd., are going to make this library accessible as
OSS [1] and open a website [2] to read documents, view samples
and manage licenses in 2019.

1. CONCEPTS
The main concept of Ongaq JS is to make it easier and more
pleasant to program music. These days, many people want to
acquire skills of programming and create what can keep
motivating them to study. Therefore, we have developed Ongaq
JS for this purpose.

2. USAGES
In this section, I describe usages of Ongaq JS in order of
appearance in general program.

2.1 Create An Account
Before starting to write code, we have to create an account of
Ongaq JS and obtain an API key. This API key is required for
fetching sound resources from our server. The details of the sound
resources are described in my previous papers [3].

2.2 Prepare A Context
Prepare a context of Ongaq JS by initializing an Ongaq object
(See Figure 1). This object imports Part objects which constitute
music compositions. We can play and pause them by methods on
the Ongaq object.

Create Part objects to form our music compositions. A Part object
can be compared to a member of a band. We assign each Part
object a sound resource and attach them to the Ongaq object. (See
Figure 2)

Figure 2. Attaching a Part object to the context

2.4 Define Behaviors with Filter Objects
We can add Filter objects to the Part objects to define their
behaviors. There are various types of Filter objects which define
different behaviors. For example, a “note” type Filter defines
when and which musical scales are played and a “pan” type Filter
defines when and from which direction sounds come. Note that
for some instruments, names like “hihat” or “kick” may be used
instead.

In Figure 3, the Part object is defined to play “C2”, “D2#”, “G2”
at beat 0 and beat 8 for 4 beat length. The function which is
assigned to “active” property is called right before each beat while
the context is playing, receiving the beat index as argument.

Figure 3. Adding a Filter object to the Part object

By default there are 16 beats in a measure. This can be
overwritten by settings of Part objects.

2.5 Chord: Helper Object
Chord is a helper object which provides a list of musical scales
consisting of a chord. It also has some methods to shift or
rearrange them. This makes it easier for developers to obtain
harmony.

Here is an example of utilizing a Chord object in Figure 4.

Figure 4. Utilizing a Chord object

Licensed under a Creative Commons Attribution 4.0 International License (CC BY
4.0). Attribution: owner/author(s).
Web Audio Conference WAC-2019, December 4–6, 2019, Trondheim, Norway.
© 2019 Copyright held by the owner/author(s).

Figure 1. Initializing an Ongaq JS context

2.3 Add Part Objects

3. NOTATION
3.1 Musical Scales
We can write musical scales like “[scale][octave][#(optional)]”.
Available scales are from “C1” to “B4” for 4 octaves.

Instead of this notation, we can also use calculable one as “[index
of scale]$[octave]”. “1$1” corresponds to “C1” and “4$12”
corresponds to “B4”.

3.2 Chords
We can use general notation of chords as shown in Table 1.
However, write directly “b” instead of “♭”.

Table 1. Some examples of chord names

Chord Name Root Scheme

Cm7 C m7

GbM9 Gb M9

Am7(11) A m7(11)

4. TECHNICAL POINTS
4.1 Scheduling Sounds
The most basic function of precisely scheduling sounds is based
on the idea described in the article of HTML5 Rocks [4]. While
the context is playing, the context continuously collects chains of
AudioNode objects from Part objects.

4.2 Considering Memory
Ongaq JS potentially uses a lot of memory, and we have worked
hard to minimize its memory footprint. After repeated use, the
program would sometimes crash, and we found that this was
related to the number of allocated objects. By reducing object
allocation to a minimum the program no longer experiences fatal
performance problems.

5. FUTURE WORK
5.1 Enhancement
We plan to keep upgrading Ongaq JS. We would like to make it
rich enough to use for live performance or interactive musical art.
Furthermore, in order to make the program more accessible for
beginners, we plan to provide enough documents, samples and
guidance for them to study by themselves.

5.2 Tools for STEM Education
We plan to develop visual programming tools for STEM
education with Ongaq JS. In Japan, the government has decided to
start lessons to cultivate basic skills of programming at all
elementary schools in 2020. We want to provide suitable tools
which can be applied to those needs.

As we can find at preceding projects, such as Music Blocks [5],
music is really suitable for students to make friends with numbers,
calculation or abstract concepts like variables or iteration.
Therefore, we also plan to provide tools which encourage students
learn programming and mathematics inclusively.

6. ACKNOWLEDGEMENTS
I would like to thank Torkel Berli from Wovn Technologies, Inc.
for reviewing English usage, Hikaru Takakura, co-founder and
engineer of CodeNinth Ltd., for taking part in discussions and
code reviewing.

7. REFERENCES
[1] CodeNinth Ltd,. 2019. The GitHub repository of Ongaq JS.

Retrieved from https://github.com/codeninth/ongaq-js
[2] CodeNinth Ltd,. 2019. The portal site of Ongaq JS. Retrieved

from https://www.ongaqjs.com/
[3] Takakura, Hiroyuki. 2017. WebbyJam, a Web Tune

Editor to Find Enjoyment. In Proceedings of 3rd Web
Audio Conference (London, U.K, August 21 – 23, 2017).
https://qmro.qmul.ac.uk/xmlui/handle/123456789/28066

[4] Wilson, Chris. 2013. A Tale of Two Clocks - Scheduling
Web Audio with Precision. Retrieved from
https://www.html5rocks.com/en/tutorials/audio/scheduling/

[5] Sugar Labs. 2019. The GitHub repository of Music Blocks.
Retrieved from https://github.com/sugarlabs/musicblocks

8. APPENDIX
8.1 Sample Code
This is a sample code that corresponds to a looping music
consisting of drums and keyboard.

