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WHAT WILL WE TALK ABOUT?
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Roadblock I Lack of consensus on foundational term definitions

Roadblock II Misleading motivations

Roadblock III Dependencies on multiple disciplines

Intro Roadblocks pose risks that can be suicidal to the field

Trends No representative trends to eliminate roadblocks

Summary directions Clearing the fog so we can see the road



Rosina Weber ©2022:

ROADBLOCKS POSE RISKS THAT CAN BE SUICIDAL TO THE FIELD

4

Lack of consensus on foundational term definitions

Misleading motivations

Dependencies on multiple disciplines

Image by Al Seeger from Pixabay

https://pixabay.com/users/alseeger-624/?utm_source=link-attribution&amp;utm_medium=referral&amp;utm_campaign=image&amp;utm_content=1167333
https://pixabay.com/?utm_source=link-attribution&amp;utm_medium=referral&amp;utm_campaign=image&amp;utm_content=1167333
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LACK OF CONSENSUS ON FOUNDATIONAL TERM DEFINITIONS
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Interpretable model

Explanation

Scope of the field

Image by Herbert Bieser from Pixabay

https://pixabay.com/users/hbieser-343207/?utm_source=link-attribution&utm_medium=referral&utm_campaign=image&utm_content=692660
https://pixabay.com/?utm_source=link-attribution&utm_medium=referral&utm_campaign=image&utm_content=692660
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LACK OF CONSENSUS ON FOUNDATIONAL TERM DEFINITIONS:
SCOPE OF THE FIELD
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W.R.T. METHODS
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The prestigious author Rudin, recipient of the AAAI 2022 Squirrel Award, stated in 2022, respectively, p. 9, p. 61
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EXPLAINABLE AI (XAI) AND INTERPRETABLE MACHINE LEARNING (IML)

……………….

Rosina Weber ©2022



The implication of Rudin’s review is that XAI is unnecessary because its methods are dangerous 
and are not needed, as it is always better to use an interpretable model than try to explain a 
non-interpretable one (2022).
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EXPLAINABLE AI (XAI) AND INTERPRETABLE MACHINE LEARNING (IML)
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EXPLAINABLE AI (XAI) AND INTERPRETABLE MACHINE LEARNING (IML)DIRECTION I: Engage the XAI community to describe and make explicit their broad 
view of the sub-field of XAI. 
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LACK OF CONSENSUS ON FOUNDATIONAL TERM DEFINITIONS:
INTERPRETABLE MODEL

Authors gave definitions for interpretability but did not describe any scientific 
methodology in their support
(e.g., Schielzeth 2010, Lou et al. 2012, Doshi-Velez and Kim 2017, Drumond et al. 2017, Zhang & Zhu 2018, Gilpin et al. 2018, Lipton 2018, Chen et al. 2019, Lalor & 
Guo 2022, Rudin et al. 2022).

Some AI methods are referred to as interpretable (e.g., decision trees) but authors 
have argued in favor of explaining such ‘interpretable’ methods (e.g., Izza, Ignatiev, 
Marques-Silva 2020 and 2022) 

Rudin et al. (2022) proposes that “an interpretable model is constrained, following 
a domain-specific set of constraints that make reasoning processes understandable 
(p.11).”
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DIRECTION II: Investigate a precise means to describe and recognize interpretability aspects of a model both at the 
global and local levels so it can be determined when explanation methods for the model are needed.
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LACK OF CONSENSUS ON FOUNDATIONAL TERM DEFINITIONS:
EXPLANATION
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The literature reveals disagreement in the literature on multiple aspects of explanations (e.g., Buchholz 
2022 states that authors disagree on what to explain, to whom, what methods to use, and why) .

Paper title: “”Explanation" is Not a Technical Term: The Problem of Ambiguity in XAI” Gilpin et al. 2022

A definition for explanation was given by social scientists (Mueller et al. 2019), particularly by 
psychologists who study trust.

The contributions from social science field have a place in evaluating the user aspects; they should not 
stop us from advancing the computing aspects of XAI methods.

For example, for evaluation, the claim is that we cannot use benchmark datasets because each user 
requires a different explanation Yang, Du, and Hu (2019). 

Various authors agree that the lack of ground-truth for evaluating explanations is a limitation (Tomsett et 
al. 2019; Hooker et al. 2019; Yang, Du, and Hu 2019; Montavon 2019).

Many others have proposed datasets to evaluate explanations (Barr et al. 2020, Mahajan, Tan, Sharma 
2019, Yang & Kim 2019, Amiri et al. 2020, Zhou, Booth, Ribeiro, Shah 2022).
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LACK OF CONSENSUS ON FOUNDATIONAL TERM DEFINITIONS:
EXPLANATION AND PROBLEM WITH EVALUATIONS
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DIRECTION III: Investigate approaches to evaluate the competence of XAI methods to produce 
each type of information content that can have explanatory value including benchmark datasets.
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EXAMINE THE CONTEXT OF EXPLANATIONS
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Explanation context

AI method context

Human in a decision-making context



EXPLANATION CONTEXT

An AI method should be able to explain its decisions

18

userAI method

explanation
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AI is a field of study 
dedicated to methods 
that produce rational 

decisions via 
computations of tasks 

such as planning, 
classification, and vision.

AI METHOD

19

AI method

explanationoutput



AI METHOD
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AI method

explanationclass

plan

object

The explanation context of an AI method can be seen as the set of information contents offered 
as output in addition to its precisely defined output.

The set of information contents to populate the explanation context is limited to the outputs 
produced by the AI method (e.g., global importance factors—make a model interpretable) and 

the information contents produced by all the compatible/applicable XAI methods.
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DIRECTION IV: Investigate how to precisely define the explanation 
context from the perspective of the AI method.
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USER IN A DECISION-MAKING CONTEXT
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user

explanation
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DECISION-MAKING MODEL
Simon (1957) Huber (1980)
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Gathering information 
about the problem

Identifying alternate strategies 
that can solve the problem

Completing the decision by 
choosing the best strategy

Monitoring the 
implementation
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Taking action by 
implementing the decision



HUMAN USERS MAKE THE DECISIONS OR OBTAIN 
DECISIONS FROM HUMANS

24

human decision maker is human

explanation
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human

Humans describe problems

decision maker is human

Human decision maker 
communicates decision

Human decision makers communicate multiple 
information types and not always include an 

explicit decision

HUMAN USERS OBTAIN DECISIONS FROM HUMANS
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AI methods return decisions via solutions 
to AI tasks, e.g., class is mammal, plus 

aspects that make the model interpretable

Humans describe problems

human decision maker is AI method

human

Humans describe problems

decision maker is human

Human decision maker 
communicates decision

Human decision makers communicate multiple 
information types and not always include an 

explicit decision

AI methods communicate the output of an AI task, 
e.g., a class, prediction, or plan such as 

“application rejected”. 

HUMAN USERS OBTAIN DECISIONS FROM OTHERS
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AI methods return decisions via solutions 
to AI tasks, e.g., class is mammal, plus 

aspects that make the model interpretable

Humans describe problems

human decision maker is AI method

AI methods return decisions as in the box 
below, e.g., class is mammal, number of 
legs has highest contribution followed by 

lacto-beverage production

decision maker 
is XAI-equipped AI methodhuman

Humans describe problems

human

Humans describe problems

decision maker is human

Human decision maker 
communicates decision

Human decision makers communicate multiple 
information types and not always include an 

explicit decision

AI methods communicate the output of an AI task, 
e.g., a class, prediction, or plan such as 

“application rejected”. This is the only part that if 
formalized in the design of the AI method.

There is a limited number of information types that can 
be produced as outputs of XAI methods, they are 
feature attributions (from which visualizations like 
salience maps can be bult), instance attributions, 

examples, rules, and counterfactuals.

HUMAN USERS OBTAIN DECISIONS FROM OTHERS
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EXPLANATION CONTENTS PRODUCED BY AI METHODS DO 
NOT MATCH EXPLANATION CONTENTS USERS EXPECT
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AI methods return decisions via solutions 
to AI tasks, e.g., class is mammal

Humans describe problems

human decision maker is AI method

decision maker 
is XAI-equipped AI methodhuman

Humans describe problems

human

Humans describe problems

decision maker is human

Human decision maker 
communicates decision

AI methods return decisions as in the box 
below, e.g., class is mammal, number of 
legs has highest contribution followed by 

lacto-beverage production
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Lim 2012, Nunes and Jannach 2017, Chari et al. 2020 provide multiple information contents users 
expect as explanations that AI methods can use to explain themselves. Other contributions come 
from Gunning (2017), Gilpin et al. (2018), and Gallant (1988).
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LACK OF CONSENSUS ON FOUNDATIONAL TERM DEFINITIONS:
EXPLANATION

When do you succeed?
When do you fail?

When can I trust you?
How do I correct an error?
What happens before you make a decision?

Is there scientific evidence for this result?
What do you know?

How certain are you? 
What data did you use? 

What would it take for me to get another decision?
Are you sure it is not something else ?
How did you make that decision?

Why did you make that decision?
What background and complementary information do 
you use? 
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LACK OF CONSENSUS ON FOUNDATIONAL TERM DEFINITIONS:
EXPLANATION

Feature attribution: 
(additive) SHAP Lundberg & lee (2017), LIME Ribeiro, Singh, and
Guestrin (2016), DeepLift Shrikumar, Greenside, & Kundaje (2017), LRP Bach et al. (2015); 
(non-additive) GradCAM Selvaraju et al. (2017), Integrated Gradients Sundararajan, Taly, and Yan (2017), 
SmoothGrad Smilkov et al. (2017) 
Instance attribution:
Influence functions Koh & Liang (2017), representer points Yeh et al. (2018), HYDRA Chen et al. (2021)
Example-based, Prototype-based:
CBR, CBR Twins, Prototypes, Bayesian-based, etc.
Counterfactuals:
DICE, MACE, VLK, case-based (Smyth): See Keane et al. 2021 for a review
Rules, paths, etc.
Rule extractors, decision-tree paths Izza, Ignatiev, & Marques-Silva (2020)

30

Considering the information produced as output, XAI methods can be grouped by:
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LITERATURE DESCRIBES 
QUESTIONS USERS WOULD 

LIKE ANSWERED THAT ARE NOT 
PROVIDED BY XAI METHODS

When do you succeed?
When do you fail?

When can I trust you?
How do I correct an error?
What happens before you make a decision?

Is there scientific evidence for this result?
What do you know?
What background and complementary information do 
you use?

Feature attribution: 
(the role played by different features in classifying an instance.)

Why did you make that decision?
How did you make that decision?

Instance attribution: 
(the role played by different training instances in classifying an instance.) What data did you use?

Example-based: 
(instances that are similar to the instance being explained.)

How certain are you?

Counterfactuals: 
(neighbor instances that are produce different outcome class)

Are you sure it is not something else ?
What would it take for me to get another decision? 
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DIRECTION V: 
Investigate methods to produce the information contents users want that are not yet available.
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MISLEADING MOTIVATIONS
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Accuracy interpretability tradeoff

Users do not trust AI agents because they are black-boxes

Image by Pablo Jimeno from Pixabay

https://pixabay.com/users/pablojimeno-18749234/?utm_source=link-attribution&utm_medium=referral&utm_campaign=image&utm_content=5663526
https://pixabay.com/?utm_source=link-attribution&utm_medium=referral&utm_campaign=image&utm_content=5663526
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ACCURACY INTERPRETABILITY TRADEOFF
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ACCURACY INTERPRETABILITY TRADEOFF



AUTHORS WHO DEMONSTRATE THE 
TRADE-OFF DOES NOT HOLD

“These two data extremes show that in machine learning, the dichotomy between 
the accurate black box and the less-accurate interpretable model is false” Rudin et 
al. 2022.
Murdoch et al. 2019; 
Dziugaite, Ben-David and Roy 2020; 
Rudin et al. 2022; 
Bell et al. 2022; 
Ahmed et al. 2022
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USERS DO NOT TRUST AI AGENTS BECAUSE THEY ARE BLACK-BOXES

37Photo by Max Fischer:

https://www.pexels.com/photo/black-gift-box-with-white-ribbon-5872351/


LITERATURE DESCRIBES 
QUESTIONS USERS WOULD 

LIKE ANSWERED THAT ARE NOT 
PROVIDED BY XAI METHODS

When do you succeed?
When do you fail?

When can I trust you?
How do I correct an error?
What happens before you make a decision?

Is there scientific evidence for this result?
What do you know?
What background and complementary information do 
you use?

Feature attribution: 
(the role played by different features in classifying an instance.)

Why did you make that decision?
How did you make that decision?

Instance attribution: 
(the role played by different training instances in classifying an instance.) What data did you use?

Example-based: 
(instances that are similar to the instance being explained.)

How certain are you?

Counterfactuals: 
(neighbor instances that are produce different outcome class)

Are you sure it is not something else ?
What would it take for me to get another decision? 
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Excuse me, wasn’t the problem that machine learning methods were black-boxes? 
These questions do not all seem to be concerned with black-boxes
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Excuse me, wasn’t the problem that machine learning methods were black-boxes? 
These questions do not all seem to be concerned with black-boxes

Because users require multiple information contents, then simply using interpretable methods will not suffice to 
provide users with the information contents they want!
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USERS DO NOT TRUST AI AGENTS BECAUSE THEY ARE BLACK-BOXES

human

Humans describe problems

decision maker is human

Human decision maker 
communicates decision
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USERS DO NOT TRUST AI AGENTS BECAUSE THEY ARE BLACK-BOXES

decision maker is human

Humans perform intelligence,  
design, and choice; and the same human 

implements (i.e., takes action) and 
monitors the solution
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USERS DO NOT TRUST AI AGENTS BECAUSE THEY ARE BLACK-BOXES

decision maker is human

Humans perform intelligence,  
design, and choice; and the same human 

implements (i.e., takes action) and 
monitors the solution

human

Humans send queries asking for 
information, executing intelligence

Database 
DB

DB process data to 
produce information

Humans use 
their knowledge to make 

decisions (i.e., execute design 
and choice), and implement 

those decisions
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USERS DO NOT TRUST AI AGENTS BECAUSE THEY ARE BLACK-BOXES

decision maker is human

Humans perform intelligence,  
design, and choice; and the same human 

implements (i.e., takes action) and 
monitors the solution

human

Humans send queries asking for 
information, executing intelligence

Database 
DB

DB process data to 
produce information

Humans use 
their knowledge to make 

decisions (i.e., execute design 
and choice), and implement 

those decisions

human

Humans describe problems

AI 
method

AI methods return 
decisions via solutions 

to AI tasks

Humans implement 
decisions 

(i.e., take action)

For non-ai experts, could this change in paradigm be the cause of resistance?  
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If XAI is a sub-field dedicated to open black-boxes because: 
1. humans do not trust AI methods because they are black-boxes, and 
2. there is a tradeoff between accuracy and interpretability
then I agree this field should not exist!

We need a sub-field to study how AI methods explain 
themselves.
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DIRECTION VI: 
What are the motivations for the field of XAI?
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DEPENDENCIES ON MULTIPLE DISCIPLINES
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Multi and interdisciplinarity

Barriers to multi-disciplinarity

What to avoid

What to do



MULTI AND INTERDISCIPLINARITY

Multidisciplinarity
Juxtaposition of disciplines in both education and research without integration and with 
limited interaction characterizes multidisciplinarity (Lattuca 2001, Klein 2010).

Juxtaposition of disciplines does not mean that researchers can execute the research 
methods outside their own expertise. 
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MULTI AND INTERDISCIPLINARITY

Multidisciplinarity
Juxtaposition of disciplines in both education and research without integration and with 
limited interaction characterizes multidisciplinarity (Lattuca 2001, Klein 2010).

Interdisciplinarity
Interdisciplinarity is characterized by juxtapositions that entail integration, interaction, 
linking, focusing and blending (Klein 2010). Choi and Pak (2006) further describes linking as 
supporting a coherent whole where disciplinary boundaries eroded.
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HAS XAI SUCCEEDED IN ERODING THE BOUNDARIES AND CREATING A COHERENT WHOLE THROUGH THE 
JUXTAPOSITION OF COMPUTER SCIENCE AND SOCIAL SCIENCES AROUND EXPLAINABILITY TO END USERS?

50

Gilpin et al. 2022

Rudin et al. 2022

Buchholz 2022
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DEPENDENCIES ON MULTIPLE DISCIPLINES

When computer scientists/mathematicians/statisticians/engineers have their submissions to 
AAAI/IJCAI rejected on the basis that they do not include validation via user studies,

they are conducting these studies without the help of qualified social scientists.

This unsuccessful lack of boundaries is also causing papers written by social scientists being 
reviewed by non-social scientists 
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THE RESULT IS LACK OF RIGOR
Johs et al. 2022 surveyed papers and observed large part lacked details required to assess 
qualitative research rigor.

Non-experts in qualitative research should not be encumbered with the additional burden of 
designing, conducting, and analyzing the results of qualitative investigations in XAI. 

We underscore the standpoints of Miller, Payrovnaziri et al., Bhatt et al., and Xu and call for 
the XAI community to collaborate with experts from social disciplines toward bolstering rigor 
and effectiveness in user studies.
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BARRIERS TO INTERDISCIPLINARITY

53

Researchers in one discipline do not even know about the research interests, research questions, and theories the 
researchers in other disciplines rely on.

Researchers in each discipline have their own culture and values that impact decisions at every step. 

Researchers in each discipline have their own value judgements that can manifest in different interpretations of 
reality.

The steps pursued by a given culture and value judgement are interdependent and such interdependencies are 
not obvious or apparent.

Lélé and Norgaard 2005 Haythornthwaite et al. 2006 Wagner et al. 2011

Organizational barriers such as difficulties stemming from disciplines not being organized based on societal 
problems and overhead imposed by infrastructure and logistics of collaboration. 

Perceptions that interdisciplinary work is of lesser value, and the fact that it is harder to reproduce.
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HOW TO COUNTERACT INTERDISCIPLINARY BARRIERS

54

Make every step (research goals, research questions, theories), concept, 
interpretation, and their interdependency explicit (Bauer 1990) .

Make your discipline, research goals, research questions, and theories explicit 
and keep it multidisciplinary.

Avoid the risks of interdisciplinarity.



55Rosina Weber ©2022:

DIRECTION VII: 
Make explicit what your discipline is and indicate the AI method, the AI task, the 
XAI aspect you are investigating. Delimit the scope of each expertise!



TRENDS
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Social scientists continue to advance their studies, e.g., personalized XAI (Conati 
et al. 2021b; Vasileiou and Yeoh 2022)
Authors continue to identify new criteria for evaluation, but no benchmarks 
(Weber, Amir, and Miller 2022)
There is a new trend to use XAI methods to improve model performance
No papers addressing any of the roadblocks except for one exception for 
evaluating counterfactuals (Keane et al. 2021)
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DIRECTION I: Engage the XAI community to describe and make explicit their broad view of the sub-field of XAI. 

DIRECTION II: Investigate a precise means to describe and recognize interpretability aspects of a model both at the 
global and local levels so it can be determined when explanation methods for the model are needed.

DIRECTION III: Investigate approaches to evaluate the competence of XAI methods to produce each type of 
information content that can have explanatory value including benchmark datasets.

DIRECTION IV: Investigate how to precisely define the explanation context from the perspective of the AI method.

DIRECTION VI: What are the motivations for the field of XAI?

DIRECTION VII: Make explicit what your discipline is and indicate the AI method, the AI task, the XAI aspect you are 
investigating. Delimit the scope of each expertise!

DIRECTION V: Investigate methods to produce the information contents users want that are not yet available.
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GUIDANCE FROM SOCIAL SCIENTISTS

“Material that is offered as an explanation, no matter its medium, format, or 
reference, is only an explanation if it results in good effect, that is, it has 
explanatory value for particular individuals.
Technically, the property of “being an explanation” is not a property of text, 

statements, narratives, diagrams, or other forms of material. 
It is an interaction of: 
(1) the offered explanation, 
(2) the learner’s knowledge and beliefs, 
(3) the context or situation and its immediate demands, and 
(4) the learner’s goals or purposes in that context. This explains why it is possible 

that purely descriptive statements, not primarily intended to serve as 
explanations, can nevertheless have explanatory value” Mueller et al., 2019, p. 
86.
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