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Introduction
Recurrent Neural Network (RNN):
• Feedback loops allows model to retain information of previous
input.
• Typically fed sequence data with inter-item dependencies.
• Used to achieve state of the art results in many NLP and audio
related problems.
• Recently shown promise in the field of session-based
recommendation [1].

Point Process:
• Well established concept from statistical theory.
• Probabilistic distribution of point in underlying mathematical
space.
• Distributed according to probability distribution.
Our proposal:
• Joint model based on RNN and point process that performs
recommendation and return time prediction.
• RNN is used to recommend next item based on previous choices.
• Time until next session is modeled with a point process.
• RNN is also used for inter-session modeling, which is used to
assist both recommendation and time prediction.

Model
We propose a Temporal Hierarchical RNN (THRNN) based on the
work done in [2]. The hierarchical RNN is extended with a point
process and shares factors with one of the RNN layers. The point
process is inspired by [3], and used to model time between
sessions as opposed to choices.

Hierarchical RNN:
• Two highly coupled RNN layers.
• Intra-session RNN:

– Fed with user choices and outputs item scores for recommendation.
– The final output of full session is stored as a session representation.

• Inter-session RNN:
– Fed with session representations along with session contexts.
– Used to supply recommendation and time prediction with inter-session
information.

– Final output is used as initial hidden state in Intra-session RNN and is used
in the intensity function of the point process.

Temporal modeling

The parameterization of the intensity function of the point
process is shown in Equation 1

λ∗(t) = exp(vt> · hj + wt · (t− tj) + bt) (1)

• hj is the final output/hidden state of the inter-session RNN.
• vt, wt and bt are temporal modeling specific trained parameters.
• tj is the time of the last session and t is the time variable.
The full conditional density distribution of the point process is
shown in Equation 2.
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Temporal tuning parameter

We introduced a tuning parameter in the temporal loss for
controlling the long-/short-term focus of the model. The parameter
appears as an exponent in every time term in the negative
likelihood loss using the conditional density distribution (Equation
2).

(t− tj)α

Results: Recommendation

R@20 MRR@20
GRU4REC 0.2474± 0.0002 0.0969± 0.0002
HRNN 0.2751± 0.0006 0.1004± 0.0004

(+11.2%) (+3.7%)
THRNN 0.2795± 0.0006 0.102± 0.0003

(+13.0%) (+5.3%)
Table: Recall and MRR results on the LastFM dataset.

R@20 MRR@20
GRU4REC 0.475± 0.0003 0.25± 0.0006
HRNN 0.616± 0.0012 0.3347± 0.0015

(+29.7%) (+33.9%)
THRNN 0.6228± 0.0009 0.3371± 0.0014

(+31.1%) (+34.8%)
Table: Table with the recall and MRR on the Reddit dataset.

• GRU4REC:Model based on the single layer RNN model proposed
in [1].
• HRNN: The hierarchical RNN model from [2].
• THRNN: Our model, Temporal Hierarchical RNN.

Results: Time prediction

(a) Plot of time prediction results on the LastFM dataset. (b) Plot of time prediction results on the Reddit dataset.

Time Prediction Plot Info:
• x-axis: Length of return-time to predict in days
• Left y-axis: Number of of observed return-times of x days length

– Black curve: Observation count
• Right y-axis: Mean Absolute Error in days

– Colored curves: Return-time MAE of the proposed model and baselines

Results: Tuning parameter settings

Figure: Plot showing the effect of different setting of the tuning parameter α on
the Reddit dataset.
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Additional Information

• Code repo: https://github.com/BjornarVass/Recsys/
• This research project led to the publication [4].
• Authors with * are presenters at NorwAI Innovate 2021.
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