
EvoLP.jl: Modular Optimisation in Julia
using Evolutionary Computation

Xavier F. C. Sánchez-Dı́az, Ole Jakob Mengshoel
Department of Computer Science, NTNU
xavier.sanchezdz@ntnu.no, ole.j.mengshoel@ntnu.no

Abstract
We present an open-source software framework, EvoLP.jl [2], to support the
research in optimisation using Evolutionary Computation (EC) in the Norwe-
gian scientific community. EC is highly relevant in many problems in artificial
intelligence, engineering and statistics when non-convex or non-differentiable
functions appear. The software is a package in the Julia programming lan-
guage that provides reusable computing blocks for experimenting and analysing
several components for single-objective EC algorithms. By stacking these blocks,
the user can quickly create modular solvers where each of the components can
be easily swapped for testing. In addition, it provides a few built-in algorithms
ready to use out of the box. A bunch of utilities for analysis are available as well:
test functions, result reporting, and statistics logging and overview. EvoLP.jl is
an effort of the Norwegian Open Artificial Intelligence Lab.

A visual example: The 8-queens problem

This example deals with a classical combinatorial problem in AI where the goal is
to place 8 queens in a chess board such that no queen checks each other [1].
Fig. 1 shows three configurations where the constraints and possible clashes are
highlighted.

(a) Queen constraints (b) Generated conflicts (c) Possible solution

Figure 1: The 8-queens problem. 1a shows the constraints (in pink) imposed by the
placement of a single queen piece (in blue). 1b highlights the conflicts arising from a
possible configuration of the board. 1c illustrates one possible solution with no con-
flicts.

Let’s design a solution

Using the provided blocks we can set up a solver quickly. We would need:

• A permutations generator

• A tournament selector

• A permutation recombinator

• A permutation mutator

• An objective: minimise conflicts

Let’s code the solution

What is Julia?

Julia is high-level, high-performance programming language very suitable for sci-
entific computing. It is part of the PetaFLOPS Club (1015 floating point operations
per second) along with C, C++ and Fortran, and its syntax is similar to Python or
MATLAB. This is the Julia code for solving the 8-queen problem using EvoLP.jl:

using EvoLP

X = permutation_vector_pop(100, 8, 1:8)

S = TournamentSelectionSteady(5)

C = OrderOneCrossover()

M = SwapMutation()

f = diag_constraints(x)

result = mySteadyGA(statsbook, diag_constraints, X, 500,

S, C, M, 0.8)↪→
@show optimum(result)

@show optimizer(result)

And here is one possible output of the solution above:

optimum(result) = 0

optimizer(result) = Any[5, 1, 8, 6, 3, 7, 2, 4]

Check the full step-by-step example in the documentation.

What else can EvoLP do?

Components

Figure 2: Stack the components together
to make your own solver.

• Random population generators for
vectors and particles

• Parent selectors

• Several recombinators and mutators

• Test functions for benchmarking your
algorithms

• Convenient result reporting and a log-
book for statistics

• Built-in algorithms

• Support for custom operators

And what can I use it for?

Combinatorial challenges:

• Assignment and packing

• Scheduling and search

• Constraint satisfaction and optimisation

Numerical optimisation and tuning for
machine learning:

• Hyperparameter tuning

• Neuroevolution

• Feature selection

Jump right into it

EvoLP.jl is well-tested, provides extens-
ive documentation and is free—available
for everyone to use under an open-source
license at GitHub. After installing Julia,
you can install EvoLP.jl by using the Julia
REPL:

julia> import Pkg

julia> Pkg.add("EvoLP")

This should install EvoLP in your system.

Figure 3: Visit the GitHub repository by
scanning this QR code.

Acknowledgements

EvoLP.jl is partly funded by Project no.
311284 of The Research Council of Nor-
way. We would like to thank the Norwe-
gian Open Artificial Intelligence Lab for
the promotion and hosting of the frame-
work in its GitHub repository, and IDI for
access to its computing resources.

References

[1] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Pearson
Series in Artificial Intelligence. Pearson, 2020.

[2] X. F. C. Sánchez-Dı́az and O. J. Mengshoel. EvoLP.jl: a playground for evolution-
ary computation in Julia. In NAIS’23: Symposium of the Norwegian AI Society,
Bergen, Norway, June 2023.

NorwAI Innovate Conference 2023


	A visual example: The 8-queens problem
	Let's design a solution
	Let's code the solution
	What is Julia?


	What else can EvoLP do?
	Components
	And what can I use it for?

	Jump right into it
	Acknowledgements

