A Good Start

Designing the first two years of a master programme

Lars Lundheim CDIO Conference 2021

Required courses:

- Pulp Paper Production Principles
- Pencil Sharpening Workshop
- Chemistry of Crayons
- Art History I
- Geometric Theory of Perspective
- Art History II
- Visual Composition
- Goethe's Colour Theory (elective)
- Eraser plasticity and durability (elective)
- just to mention a few ...

New five year program from 2014

ELSYS: Electronic System Design and Innovation

Before 2014 (16 x 7.5 ECTS)

Semester				
4	Math	Physics	Ciricuits and electronics	Ciricuits and electronics
3	Math	Physics	Computer Science	Ciricuits and electronics
2	Math	Math	Computer Science	Ciricuits and electronics
1	Math	Ciricuits and electronics	Computer Science	Intro to philosopy

The engineering ladder

Structure of progress

First semester

- All student activity on one weekday: Wednesday is Elsys Day!
- No exam
- No homework
- Compulsory attendance 0815-1600
- Alternating between classroom and work space

A typical Elsys Day

08.15 Assembly in classroom - Plans for the day - Lecture?

09.00 (at the latest) Group Work

11.15 Guest Talk (always!)

12.00 Lunch

13.00 More Group Work

15.15 Assembly in Classroom.

- Summary
- Presentations
- Discussion

16.00 End

Authentic challenges for innovation projects

2014

Surveillance of antique ships

2017

Pollution control

2015

Neuroscience demonstrators

2018

Wind power and wild life

2016

Communicating robots

2019

Electronic curling stone

Teaching in team

Bjørn

Thomas

Torbjörn

Lars

Milica

Torstein

The beefy stuff

Design and analysis

Three week cycle:

- Present "impossible" task. Work with relevant theory.
- 2. Work with relevant theory.
- 3. One week project to solve task.

Flipped lab!

Students in-to the lab

or ...

Lab out-to the students

Next steps

- Reforming the circuits course
- What about math?
- Collaboration across borders

Next steps:

3:Join forces

Semester					
4	Math	2: Motivat	te math	Project phase 2	Architecture
3	Math			ESDA II	and Design
2	Math	Math		ESDA I	Economics and Management
1	Math	Electrical Circuits and Digital Design	[–] 1: Restar	t here! Project phase 1	

Step 1: Hamburger with fries

ADE: Introduction to Analog and Digital Electronics

Activity based course organization **Traditional model** Structuring framework Follow-up Lecture **Exercises** series Lab **Textbook**

Sage on the stage

Guide on the side

Guide of the guides

Roles and interactions

Step 2: Motivate math

- Math is hard
- Connection to other disciplines is often obscure
- Normally taught independent of particular needs

Pilot project for Elsys

- Shared responsibility for motivating math.
- Same topics as earlier but adjusted emphasis
- Sequence of topics adjusted to needs mutual adjustment
- Teachers in the Elsys program explicitly point out and demonstrates the relevance of what is going on in parallel math classes

Step 3: Join forces

Interdisciplinarity

